Skip to main content
SLAC National Accelerator Laboratory
LCLSLinac Coherent Light Source

User Portal Login   |  LCLS Internal Site

  • About
    • Learn about XFELs
    • Organizational Chart
    • People & Committees
      • Leadership
      • Users' Executive Committee
      • Scientific Advisory Committee
      • LCLS Detector Advisory Committee
      • Proposal Review Panel
      • SLAC Photon Science Faculty
      • Users' Recognition Award
      • Young Investigator Award
    • Strategic Plan 2023-2028
    • Our Science
    • Internships
      • Intern Testimonials
      • Summer Student Poster Sessions
    • Jobs
    • Multimedia
      • Virtual Tours
      • Fact Sheets & Infographics
      • Image Gallery
      • Youtube Videos
    • Coming to SLAC
    • Contact Us
  • User Resources
    • User Research Administration (URA) Office
    • Schedules
    • Proposals
      • Run 27 Proposal Call
      • Proposal Preparation Guidelines
      • MeV-UED Proposals
      • Proposal Review Process
      • Universal Proposal System (UPS)
      • Submit Proposal
      • Archived Proposal Calls
    • User Agreements
    • Policies
    • Proprietary Research
    • Safety & Training
      • Work Planning & Control
      • LCLS Building Orientation
      • Hutch 6 Non-Permit Confined Space Training
      • Sample Delivery Training
      • Sample Prep Lab Training
    • SLAC User Access Requirements
      • Computer Accounts
      • Data Collection & Analysis (PCDS)
      • DAQ
      • Shipping Equipment & Materials
      • Financial Accounts
  • Publications
    • LCLS Publications
      • Archived Publications
    • Search Publications
    • Submit New Publication
    • Acknowledgements
  • Instruments
    • chemRIXS
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • CXI
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MEC
      • Science Goals
      • Experimental Methods
      • Specifications
      • Diagnostics & Components
      • Standard Configurations
      • Lasers & Beam Delivery
      • Publications
    • MFX
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
      • MFX Team
    • qRIXS
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
      • Capabilities
    • TMO
      • Science Goals
      • Layout & Specifications
      • Standard Configuration
      • Publications
    • TXI
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
    • XCS
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Operation Modes
      • Publications
    • XPP
      • Science Goals
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MeV-UED
      • Specifications
      • Run 6 Scientific Capabilities
      • Schematics
      • Endstations
      • Proposals
      • Proposal Review Process
      • Schedule
      • Publications
    • LCLS-II-HE
    • DXS
      • Science Goals
      • Experimental Methods
      • Specifications
    • Instrument Maps
    • Standard Configurations
  • Machine
    • Schedules
    • Machine Status
    • Machine FAQ (NC Linac)
    • Parameters
  • Projects
    • LCLS-II
      • Science
      • Design & Performance
      • Commissioning
    • LCLS-II-HE
      • Science
      • Design & Performance
      • Meetings and Reports
      • Instruments
      • LCLS-II-HE Checkout & Commissioning Dashboard
      • Internal Site
    • MEC-U
      • Science Mission
      • Design & Performance
      • Workshops & Meetings
      • Publications
      • News
      • Resources & Photos
      • Internal Site
  • Departments
    • SRD Leadership
    • Atomic, Molecular, & Optical Sciences
      • Research Interests
      • People
      • Research Highlights
      • Attosecond Science Campaign
    • Biological Sciences & Sample Preparations
      • Sample Environment & Delivery
      • Sample Preparation Laboratories
      • Biolabs at the Arrillaga Science Center (ASC)
      • Equipment Inventory
      • Chemical Inventory
    • Chemical Sciences
      • Research Interests
      • People
      • News & Highlights
      • Publications
    • Laser Sciences
      • Research Interests
      • Laser Capabilities​
      • People
      • User Resources
    • Material Sciences
      • Research Interests
      • People
      • Research Highlights
    • Matter in Extreme Conditions
      • Research Interests
      • People
      • Publications
    • Detectors
      • Technologies
      • People
      • User Resources
    • Experiment Control Systems
      • Leadership
    • Experiment Data Systems
      • Infrastructure
      • People
      • Projects
      • User Resources
      • Publications
  • News
    • Science News
    • Announcements
    • External News Features
      • Archive
  • Links

Breadcrumb

  1. Home
  2. …
Facebook Share X Post LinkedIn Share Email Send
  • Schedules
  • Machine Status
  • Machine FAQ (NC Linac)
  • Parameters

Parameters

  • Run 27 Machine Parameters Table (PDF)
  • Run 26 Machine Parameters Table (PDF)
  • Run 25 Machine Parameters Table (PDF)
  • Run 24 Machine Parameters Table (PDF)
  • Run 23 Machine Parameters Table (PDF)
  • Run 22 Machine Parameters Table (PDF)
  • Run 21 Machine Parameters Table (PDF)
  • Run 20 Machine Parameters Table (PDF)
  • Run 19 Machine Parameters Table (PDF)
  • Run 18 Machine Parameters Table (PDF)

Parameters Update

The Linac Coherent Light Source (LCLS) previously demonstrated FEL operations over the energy range 280 eV to 11.2 keV in the fundamental. With the LCLS-II upgrade, in 2020 we resumed operation with an all-new undulator complex, replacing the previous system with a pair of dedicated, variable-gap hard and soft X-ray undulators driven by the 120 Hz LCLS normal conducting (NC) linac. Then in Run 21, we began operation of the original LCLS-II high-rate, superconducting (SC) linac driver, pushing the envelope in average brightness for ultrafast x-ray science with an electron beam energy of up to 4 GeV. With this exciting new capability, SC linac operation began with soft x-ray programs delivering ultrashort pulses at greatly increased rates.

Now with LCLS Run 26-27, we offer capabilities to soft and hard X-ray instruments using only the LCLS NC linac at 120 Hz while the SC accelerator undergoes a major energy upgrade through the LCLS-II-HE (High Energy) Project to push its performance and photon energy reach even further for future runs.

Upgraded undulator systems have also enabled a much wider photon energy range. With the existing NC linac (120 Hz), 200 eV to 25 keV has been achieved in the fundamental with pulse energies of 0.5-2 mJ and up, depending on the pulse duration and photon energy. Pulse length can be varied from 10 fs to 50 fs for hard X-rays, while for soft X-rays the range is extended to 250 fs. Shorter pulses, < 10 fs, with a reduced number of photons per pulse can also be provided via specialized operating modes.

In Runs 23 and 25 we focused on the steady ramp of high-rate capability for soft X-ray users with the 4 GeV SC linac. SXR pulses with hundreds of microjoules in continuous trains of multiple kHz are available, with photons per pulse varying with photon energy.

Prior advanced capability beyond SASE has also been recommissioned. For high-rate, SC linac users on the SXR undulator, sub-fs, lower photon number XLEAP pulses have been successfully delivered. For NC linac users who require a monochromator, seeded hard X-ray beams can provide up to 5 times more photons per unit bandwidth than SASE beams with similar pulse durations. Seeded beams are available from 4.5 keV to 12 keV HXR range, with first tune up from a SASE beam taking about 30 minutes. The LCLS NC linac is also capable of providing two-color operating modes, where multiple FEL pulses are produced with about 1% photon energy separation, in both the hard and soft X-ray regimes.

Users are encouraged to review LCLS instrument descriptions and contact LCLS instrument scientists to discuss technical capabilities and proposed experiments.

LCLS | Linac Coherent Light Source
2575 Sand Hill Road MS103
Menlo Park, CA 94025
  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • Youtube
  • LinkedIn
  • Staff portal
  • Privacy policy
  • Accessibility
  • Vulnerability disclosure
SLAC
  • SLAC home
  • Maps & directions
  • Emergency info
  • Careers

© 2026 SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy Office of Science.

Stanford University U.S. Department of Energy
Top Top
Back to top Back to top