Projected Run 23 LCLS FEL Parameters – Update Dec 12, 2023

LCLS FEL parameters with hard and soft x-ray undulators (HXU and SXU) driven by the normal conducting and superconducting (NC and SC) linacs. NC linac values are based on Run 20-22 performance. Projected SC linac figures are based on design and to be demonstrated. Many parameters vary according to the energy, pulse length and bandwidth. Stability values below are taken over a few minutes.

The following table shows values at fixed photon energies FEL systems can generate. For important detail on nominal pulse energy versus photon energy (other parameters fixed), see the figures in the following section.

Values are capability from the FEL source and do not reflect effects specific to beamlines (e.g., transport efficiency/capability/operational beam rate). Please refer to Points of Contact and information for the relevant beamline for further details.

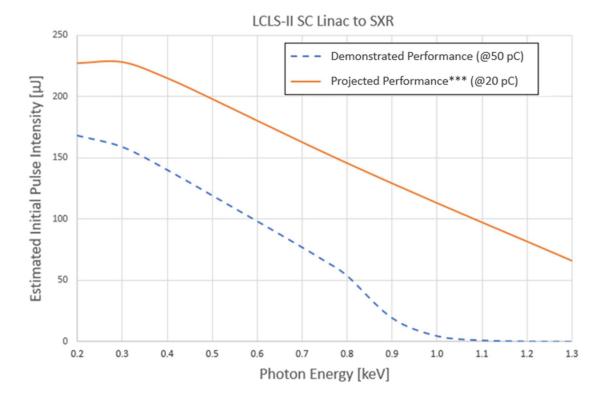
(See table on next page)

[§]Brightness units are photons/sec/mm²/mrad²/0.1%-BW

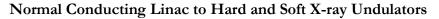
*Calculated assuming nominal pulse duration and undulator strength, and depends on other electron beam parameters

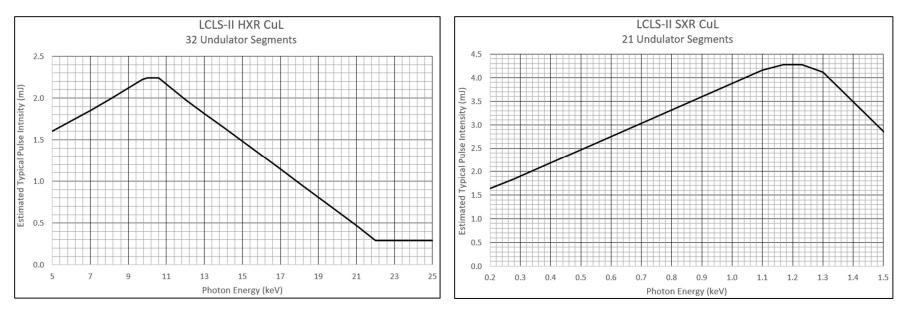
** Highest achievable beam rate will depend on accelerator protection considerations and beamline acceptance

*** Projected SC linac parameters depend on optimization of initial demonstrated performance (see next sections & Page 3)


Photon Beam Parameters	Symbol	Bymbol NC linac HXU x-rays		NC linac SXU x-rays		SC linac SXU x-rays (Projected***)			Unit
		ħω _{max}	$\hbar\omega_{\rm min}$	$\hbar\omega_{\rm max}$	$\hbar\omega_{\min}$	ħω _{max}	$\hbar\omega_{\rm nominal}$	ħω _{min}	
Photon Energy	ħω	25000	1000	5000	200	1300	800	200	eV
Fundamental wavelength	λ_r	0.5	12.4	2.5	62.0	9.5	15.5	62.0	Å
Final linac e- energy	γmc^2	16.5	3.5	10.0	3.5		3.5 - 4.0	4	GeV
FEL 3-D gain length	L_G	4.0	1.0	2.5	1.0		TBD		m
Peak power	Р	20	80	50	30	3	2.5 - 7	8	GW
Pulse duration range (FWHM)		10 -	- 50	10 -	250		20 - 40		fs
Nominal pulse duration (FWHM)	Δau_f	3	30	5	0		20		fs
Max Pulse Energy*	U	0.6	2.0	2.5	1.5	0.06	0.05 - 0.14	0.16	mJ
Photons per pulse*	Νγ	0.15	14	3.1	47	0.28	0.4 - 1.1	5.0	1012
Peak brightness*	Bpk, SASE	7800	425	2250	19	20	8.6 - 24	1.7	10 ³⁰ §
Average brightness (120Hz for Cu-	$\langle B \rangle$	280	16	138	1.5	137	57 - 161	12	10^{20} §
linac)*						@ 33 kHz	@ 33 kHz	@ 33 kHz	
SASE bandwidth (FWHM)	$\Delta \omega / \omega$	30	2	10	2	4	3	3	eV
Photon source size (rms)	σs	8	20	16	46		TBD		μm
Photon far field divergence (FWHM)	<i></i> <i>⊕</i> _{FWHM,x,∞}	1	12	3	25		TBD		μrad
Max. Beam Rate	$\phi_{ m FEL}$	1	20	12	20	1,000 - 40,000**		Hz	
Avg. x-ray beam power	P_x	0.07	0.24	0.30	0.18	2.0 @ 33 kHz	1.7-4.6 @ 33 kHz	5.3 @ 33 kHz	W
Linear Polarization (100%)	$\langle P \rangle$	Ver	tical	Horiz	zontal		Horizontal		
Electron Beam Parameters									
Nominal Bunch Charge	Q	1	80	18	30		20		pC
Total Energy Spread	$\sigma E/E$		1	1	1		0.3		10-3
Emittance (Undulator)	$\gamma \varepsilon'_{x,y}$	0.5	-1.6	0.5-	-1.6	0.5	1.0-0.5	1.0	μm
Undul. bunch length (rms)	σ_{zf}		- 3	16 – 5		~5		μm	
Final peak current	Ipk		- 5.0	1.0 - 3.0		0.5		kA	
Proj. Emittance (injector)	$\gamma \mathcal{E}_{x,y}$.45	0.4			0.5-1.0		μm
Slice Emittance (injector)	$\gamma \mathcal{E}^{s}_{x,y}$	0.	.37	0.1			0.3-1.0		μm
Inject. bunch length (rms)	σ_{z0}	5	50	55	50		< 1,000		μm
Max. Single Bunch Rep. Rate	F	1	20	12	20		1,000 - 40,000**		Hz
e- energy stability (rms)	$\Delta E/E$	0.	.02	0.0	07		0.01		%
e- x,y stability (rms)	x/σ_x	15	,10	25,20		25,20			%
e- timing stability (rms)	Δt	50-	-100	50-100		20		fs	
Peak current stability (rms)	$\Delta I/I$	1	0	6		4		%	
Charge Stability (rms)	$\Delta Q/Q$	2.5		2.5		2.5		%	
FEL pulse energy stability	$\Delta N/N$	<	10	<	10		< 10		%

Nominal pulse energy as a function of photon energy


When driven by the NC linac, photon energy may be varied using either the electron beam energy or the variable undulator gap. Optimum performance is achieved using the maximum undulator strength (minimum gap) and corresponding electron beam energy. For the new superconducting linac, only undulator strength is varied.


For the nominal beam parameters in the main table, these curves show max pulse energy at corresponding beam energy (NC linac) or undulator gap (SC linac).

This does not reflect effects related to specific x-ray beamlines (e.g., transport efficiency/capability/rate), nor any modifications to the above operating parameters (pulse duration, etc). Please refer to Points of Contact and information pertaining to the relevant beamline for further details.

Superconducting Linac to Soft X-ray Undulator

Seeded X-ray Beam Parameters

Hard x-ray self-seeding (HXRSS) is now fully re-commissioned with the NC linac. Recommissioning of soft x-ray self-seeding (SXRSS) continues into Run 22 for the SC linac. Please contact your LCLS Point of Contact regarding availability.

Mode	Linac	Energy Range	Bandwidth (FWHM)	Max Pulse Energy	Pulse Length
HXRSS	NC	4.5 – 11 keV	0.35-1.5 eV	0.2 - 0.5 mJ	Up to 30 fs
SXRSS*	NC	0.4 – 1.2 keV	~ 100 meV @ 400 eV ~ 150 meV @ 530 eV	< 50 – 200 µJ @ 50 fs	20 - 50 fs
5AR55*	SC	0.4 - 1.2 KeV	$\sim 150 \text{ meV} @ 550 \text{ eV}$ $\sim 200 \text{ meV} @ 800 \text{ eV}$	< 20 – 50 µJ @ 50 fs	20 – 50 fs

* For SXRSS, tuning for minimum spectral pedestal from the SASE FEL background can be made at the cost of total pulse intensity. The lower intensity given is for best spectral purity.

Multi-Color, Multi-Pulse Parameters

A variety of methods for generating two or more x-ray pulses are established for the NC linac. In Run 22, the split undulator scheme for soft x-rays will be commissioned with the SC linac allowing lower intensity pulses with flexible time/energy separation at the femtosecond scale.

			Multi-co	olor Pulse Mod	e Table - SHOF	RT FORM - Status Dec. 12, 2023	
SOFT X-RAYS							
Technique	Pulse Separation	Linac (Max Rate)	Min Pulse Duration	Energy Separation	Max Energy/Pulse	Comments	Reference publications
Split Undulator SASE	0 - 800 fs	NC (120 Hz)	15 fs	Up to factor 2 ratio in photon energies	>50 uJ (30 fs duration)	Minimally invasive, easy to maintain.	A. Lutman et al. Phys. Rev. Lett. 110, 134801 (2013)
	0 - 800 fs	SC (>1 kHz)	20 fs	Up to factor 2 ratio in photon energies	~few uJ	Minimally invasive, easy to maintain. Performance TBD in LCLS Run 22. Perfomance depends on photon energy.	R. Lutinan et al. Phys. Rev. Lett. 110, 194001 (2015)
Double Slotted Foil	15 - 70 fs	NC (120 Hz)	~ 10 fs	+/-1.5%	20-50 uJ	Minimally invasive, easy to maintain. Delay and energy separation are not independent, minor tuning needed between changes.	Ding et al. Appl. Phys. Lett. 107, 191104 (2015)
Two/multiple bucket (ns spacing)							
Two bucket	350 ps increments, up to 120 ns	NC (120 Hz)	30-70 fs	+/-2%	>1.0 mJ	Requires add'l setup and tuning time	Decker et al. under review.
Multiple Bucket (4 or 8 bunches)	Two trains of 4 pulses. 700 ps between each pulse in the same train.	NC (120 Hz)	30-70 fs	+/-2%	To be tested	Requires add'I setup and tuning time	Decker et al. under development
Twin Bunches (fs spacing)							
Two SASE Pulses	0 - 125 fs	NC (120 Hz)	30 fs	+/- 2.5%	0.5 mJ	Requires add'l setup and tuning time, 1st/probe pulse always higher photon energy	Marinelli et al. Nat. Commun. 6, 6369 (2015)
With slotted foil (shorter pulses)	0 - 70 fs	NC (120 Hz)	< 10 fs	+/- 2.5 %	50 uJ	Requires add'l setup and tuning time, 1st/probe pulse always higher photon energy	Marinelli et al. Proceedings of IPAC 2016, TUZA02
HARD X-RAYS							_
Technique	Pulse Separation	Linac (Max Rate)	Min Pulse Duration	Energy Separation	Max Energy/Pulse	Comments	Reference publications
Split Undulator SASE	0 - 30 fs	NC (120 Hz)	15 fs	Up to factor 2 ratio in photon energies	40 uJ (25 fs pulse duration)	Available after summer 2020.	A. Lutman et al. Phys. Rev. Lett. 110, 134801 (2013)
Twin Bunches							Marinelli et al. Nat. Commun. 6, 6369 (2015)
Two SASE Pulses	0 - 125 fs	NC (120 Hz)	~ <mark>10</mark> fs	0.2-2%	0.3 mJ (20 fs duration)	Requires add'l setup and tuning time, 1st/probe pulse always higher photon energy	Marinelli et al. Nat. Commun. 6, 6369 (2015)
With slotted foil (shorter pulses)	+/- 50 fs	NC (120 Hz)	~5-10 fs	~2%	40 uJ	Requires add'l setup and tuning time, 1st/probe pulse always higher photon energy	Marinelli et al. Proceedings of IPAC 2016, TUZA02
Double Slotted Foil	7-20 fs	NC (120 Hz)	~ 10 fs	+/-1.5%	100-200 uJ	Minimally invasive, faster setup than twin bunches. Delay/energy separation not independent, minor tuning needed between changes.	Ding et al. Appl. Phys. Lett. 107, 191104 (2015)
Two-(multiple) bucket							Decker et al. under review.
Two bucket	350 ps increments, up to 120 ns	NC (120 Hz)	20 fs	~ 1%	0.5-1 mJ (30 fs duration SASE)	Requires add'l setup and tuning time	Decker et al. under review.
Multi bucket (4 or 8 bunches)	Two trains of 4 pulses. 700 ps between each pulse in the same train.	NC (120 Hz)	20 fs	~ 1%	To be tested	Under development	Decker et al. under development
		For de	tailed inf	ormation and	rade-off decisi	ons, contact the LCLS Point Of Contact	

Short Pulse Parameters

Hard X-rays

Two methods have been demonstrated at the LCLS for generating sub-fs pulses in the hard x-ray domain with the normal conducting linac. Both methods used 20 pC bunch charges. One is based on a nonlinear electron bunch compression scheme; the other method used a new version of the slotted foil with optimized beam optics.

Spectral measurements show about half of shots containing single-spike spectra, while other shots have a few spectral spikes. The estimated duration for the single-spike pulse is about 200 - 400 as with the nonlinear compression scheme giving a bit wider bandwidth. For example, at the 5.6 keV, nonlinear method measured bandwidth about 11 eV, while the slotted foil measured bandwidth about 4.5 eV. These two schemes should work in the hard x-ray range of about 6 - 13 keV with the normal conducting linac.

Soft X-rays

For soft x-rays, the XLEAP system has been commissioned in Run 19 with the NC linac. It uses the interaction of a beam-generated burst of light with the electron beam itself to modulate the beam energy across the beam pulse. Subsequent compression using an undulator and chicane generates sub-femtosecond pulses of up to 50μ J.

Commissioning of XLEAP pulses with the SC linac will begin in Run 22. For availability and other information, please inquire with your LCLS Point of Contact.

Energy Range	Parameter	Value	Unit
HXR (NC Linac)	Pulse Energy	5-10	μJ
	Pulse Duration	200 - 400	as
	Photon Energy	5-10	keV
	Bandwidth [FWHM]	4-11	eV
SXR (NC Linac)	Pulse Energy	20	μJ
	Pulse Duration	500	as
	Photon Energy	500 - 1000	keV
	Bandwidth [FWHM]	5	eV

(See table on next page for more details on short pulses including SC linac.)

			short pulse du	Julion - Show	Γ FORM - Status 12/12/2023	
Min Pulse Duration	Linac (Max Rate)	Energy range	Energy/Pulse	Single Spike rate	Comments	Reference publications
< 8 fs	NC (120 Hz)	SXR	10-20 uJ	Up to 20%	Requires add'l setup and tuning time	Ding et al. Appl. Phys. Lett. 107, 191104 (2015)
< 8 fs	SC (1 kHz+)	SXR	10-20 uJ	TBD		Marinelli et al. under development.
Min Pulse Duration	Linac	Friendle	Energy/Pulse	single-spike rate	î	
wini Puise Duration	Linac	Energy	chergy/Pulse	single-spike rate	Comments	Reference publications
with Puise Duration	(Max Rate)	Range	Ellergy/Pulse	single-spike rate	Comments	Reference publications
400 as			5 uJ (76% fluct.)		Comments Requires some add'l tuning	Reference publications Marinelli et al. Appl. Phys. Lett. 111, 151101 (2017)
	(Max Rate)	Range		65%		
400 as	(Max Rate) NC (120 Hz)	Range HXR	5 uJ (76% fluct.)	65% 45%	Requires some add'l tuning	Marinelli et al. Appl. Phys. Lett. 111, 151101 (2017)
-	< 8 fs < 8 fs	(Max Rate) < 8 fs	(Max Rate) range < 8 fs	(Max Rate) range < 8 fs	(Max Rate) range Up to 20% < 8 fs	(Max Rate) range Up to 20% Requires add'l setup and tuning time < 8 fs