Skip to main content
SLAC National Accelerator Laboratory
LCLSLinac Coherent Light Source

User Portal Login   |  LCLS Internal Site

Main navigation

  • About
    • Organizational Chart
    • People & Committees
      • Leadership
      • Users' Executive Committee
      • Scientific Advisory Committee
      • LCLS Detector Advisory Committee
      • Proposal Review Panel
      • SLAC Photon Science Faculty
      • Users' Recognition Award
      • Young Investigator Award
    • Strategic Plan 2023-2028
    • Our Science
    • Internships
      • Intern Testimonials
      • Summer Student Poster Sessions
    • Jobs
    • Multimedia
      • Virtual Tours
      • Fact Sheets & Infographics
      • Image Gallery
      • Youtube Videos
    • Coming to SLAC
    • Contact Us
  • User Resources
    • User Research Administration (URA) Office
    • Schedules
    • Proposals
      • Proposal Preparation Guidelines
      • MeV-UED Proposals
      • Proposal Review Process
      • Run 25 Proposal Call
      • Universal Proposal System (UPS)
      • Submit Proposal
      • Archived Proposal Calls
    • User Agreements
    • Policies
    • Proprietary Research
    • Safety & Training
      • Work Planning & Control
      • LCLS Building Orientation
      • Hutch 6 Non-Permit Confined Space Training
      • Sample Delivery Training
      • Sample Prep Lab Training
    • SLAC User Access Requirements
      • Computer Accounts
      • Data Collection & Analysis (PCDS)
      • DAQ
      • Shipping Equipment & Materials
      • Financial Accounts
    • Links By Category
  • Publications
    • LCLS Publications
    • Search Publications
    • Submit New Publication
    • Archived Publications
  • Instruments
    • chemRIXS
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • CXI
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MEC
      • Science Goals
      • Experimental Methods
      • Specifications
      • Diagnostics & Components
      • Standard Configurations
      • Lasers & Beam Delivery
      • Publications
    • MFX
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • qRIXS
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
      • Capabilities
    • TMO
      • Science Goals
      • Layout & Specifications
      • Standard Configuration
      • Publications
    • TXI
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
    • XCS
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Operation Modes
      • Publications
    • XPP
      • Science Goals
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MeV-UED
      • Specifications
      • Run 6 Scientific Capabilities
      • Schematics
      • Endstations
      • Proposals
      • Proposal Review Process
      • Schedule
      • Publications
    • LCLS-II-HE
    • DXS
      • Science Goals
      • Experimental Methods
      • Specifications
    • Instrument Maps
    • Standard Configurations
  • Machine
    • Machine Status
    • Machine FAQ (NC Linac)
    • Parameters
    • Schedules
  • Projects
    • LCLS-II
      • Science
      • Design & Performance
      • Commissioning
    • LCLS-II-HE
      • Science
      • Design & Performance
      • Meetings and Reports
      • Instruments
      • Internal Site
    • MEC-U
      • Science Mission
      • Design & Performance
      • Workshops & Meetings
      • Publications
      • News
      • Resources & Photos
      • Internal Site
  • Departments
    • SRD Leadership
    • Atomic, Molecular, & Optical Sciences
      • Research Interests
      • People
      • Research Highlights
      • Attosecond Science Campaign
    • Biological Sciences & Sample Preparations
      • Sample Environment & Delivery
      • Sample Preparation Laboratories
      • Biolabs at the Arrillaga Science Center (ASC)
      • Equipment Inventory
      • Chemical Inventory
    • Chemical Sciences
      • Research Interests
      • People
      • News & Highlights
      • Publications
    • Material Sciences
      • Research Interests
      • People
    • Matter in Extreme Conditions
      • Research Interests
      • People
      • Publications
    • Laser Sciences
      • Research Interests
      • Laser Capabilities​
      • People
      • User Resources
    • Detectors
      • Technologies
      • People
      • User Resources
    • Experiment Data Systems
      • Infrastructure
      • People
      • Projects
      • User Resources
    • Experiment Control Systems
      • Leadership
  • News
    • LCLS Science SLAC News Feed
    • Announcements & Updates
    • External News Features
      • Archive
  • Links

Breadcrumb

  1. Home
  2. Instruments
  3. MFX (Macromolecular Femtosecond Crystallography)
  4. …
Facebook Share X Post LinkedIn Share Email Send
  • chemRIXS
    • Science Goals
    • Experimental Methods
    • Specifications
    • Standard Configurations
    • Publications
  • CXI
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Publications
  • MEC
    • Science Goals
    • Experimental Methods
    • Specifications
    • Diagnostics & Components
    • Standard Configurations
    • Lasers & Beam Delivery
    • Publications
  • MFX
    • Science Goals
    • Experimental Methods
    • Specifications
    • Standard Configurations
    • Publications
  • qRIXS
    • Science Goals
    • Experimental Methods
    • Layout & Specifications
    • Capabilities
  • TMO
    • Science Goals
    • Layout & Specifications
    • Standard Configuration
    • Publications
  • TXI
    • Science Goals
    • Experimental Methods
    • Layout & Specifications
  • XCS
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Operation Modes
    • Publications
  • XPP
    • Science Goals
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Publications
  • MeV-UED
    • Specifications
    • Run 6 Scientific Capabilities
    • Schematics
    • Endstations
    • Proposals
    • Proposal Review Process
    • Schedule
    • Publications
  • LCLS-II-HE
  • DXS
    • Science Goals
    • Experimental Methods
    • Specifications
  • Instrument Maps
  • Standard Configurations

MFX Science Goals

X-ray diffraction has long been used to determine atomic structures of biomolecules. Unfortunately, the same X-rays that are used to probe the structure of the sample also get absorbed and deposit energy in the sample, causing irreparable damage. This often limits the resolution achievable in a particular sample, especially biological samples which are particularly sensitive to damage. X-ray crystallography has been very successful studying biological samples by spreading the damage over as many as billions of molecules in a single crystal, greatly enhancing the diffraction signal. Since the molecules are all identical and precisely aligned in the crystal, the X-ray scattering information is preserved and the structure can be determined. As crystals are reduced in size, they become more sensitive to damage due to the need to irradiate every molecule with more X-rays to get a measurable signal, causing more damage for each molecule.

LCLS offers a way around the damage problem. Since X-ray pulses from LCLS are very intense and very short, it is possible to deliver a higher dose to a sample and record the scattered X-ray information before the damage processes have time to destroy the sample. In other words, an LCLS X-ray pulse can be focused onto a sample, which gets destroyed—but not before the scattered X-rays are already on their way to the detector carrying the information needed to deduce the structure of the molecule. The Macromolecular Femtosecond Crystallography (MFX) instrument offers the possibility of determining structures at resolution beyond the damage limit for samples which are limited by radiation damage at synchrotron sources.

MFX provides a flexible suite of instrumentation for “diffract-before-destroy” studies in structural biology in an atmospheric pressure sample environment. The emphasis of the instrument lies in its multi-modal measurement capabilities, with the X-ray instrumentation being supplemented by additional tools such as  nanosecond and femtosecond pump laser systems as well as complementary optical measurement instrumentation.-As a result, MFX is a highly versatile instrument capable of a variety of scattering and spectroscopy techniques, serving several scientific fields such as  biology, soft-condensed matter, chemistry and soft condensed matter as well as material science and materials in extreme conditions.

LCLS | Linac Coherent Light Source
2575 Sand Hill Road MS103
Menlo Park, CA 94025
  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • Youtube
  • LinkedIn
  • Staff portal
  • Privacy policy
  • Accessibility
  • Vulnerability disclosure
SLAC
  • SLAC home
  • Maps & directions
  • Emergency info
  • Careers

© 2025 SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy Office of Science.

Stanford University U.S. Department of Energy
Top Top
Back to top Back to top