Skip to main content
SLAC National Accelerator Laboratory
LCLSLinac Coherent Light Source

User Portal Login   |  LCLS Internal Site

Main navigation

  • About
    • Organizational Chart
    • People & Committees
      • Leadership
      • Users' Executive Committee
      • Scientific Advisory Committee
      • LCLS Detector Advisory Committee
      • Proposal Review Panel
      • SLAC Photon Science Faculty
      • Users' Recognition Award
      • Young Investigator Award
    • Strategic Plan 2023-2028
    • Our Science
    • Internships
      • Intern Testimonials
      • Summer Student Poster Sessions
    • Jobs
    • Multimedia
      • Virtual Tours
      • Fact Sheets & Infographics
      • Image Gallery
      • Youtube Videos
    • Coming to SLAC
    • Contact Us
  • User Resources
    • User Research Administration (URA) Office
    • Schedules
    • Proposals
      • Proposal Preparation Guidelines
      • MeV-UED Proposals
      • Proposal Review Process
      • Run 25 Proposal Call
      • Universal Proposal System (UPS)
      • Submit Proposal
      • Archived Proposal Calls
    • User Agreements
    • Policies
    • Proprietary Research
    • Safety & Training
      • Work Planning & Control
      • LCLS Building Orientation
      • Hutch 6 Non-Permit Confined Space Training
      • Sample Delivery Training
      • Sample Prep Lab Training
    • SLAC User Access Requirements
      • Computer Accounts
      • Data Collection & Analysis (PCDS)
      • DAQ
      • Shipping Equipment & Materials
      • Financial Accounts
    • Links By Category
  • Publications
    • LCLS Publications
    • Search Publications
    • Submit New Publication
    • Archived Publications
  • Instruments
    • chemRIXS
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • CXI
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MEC
      • Science Goals
      • Experimental Methods
      • Specifications
      • Diagnostics & Components
      • Standard Configurations
      • Lasers & Beam Delivery
      • Publications
    • MFX
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • qRIXS
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
      • Capabilities
    • TMO
      • Science Goals
      • Layout & Specifications
      • Standard Configuration
      • Publications
    • TXI
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
    • XCS
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Operation Modes
      • Publications
    • XPP
      • Science Goals
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MeV-UED
      • Specifications
      • Run 6 Scientific Capabilities
      • Schematics
      • Endstations
      • Proposals
      • Proposal Review Process
      • Schedule
      • Publications
    • LCLS-II-HE
    • DXS
      • Science Goals
      • Experimental Methods
      • Specifications
    • Instrument Maps
    • Standard Configurations
  • Machine
    • Machine Status
    • Machine FAQ (NC Linac)
    • Parameters
    • Schedules
  • Projects
    • LCLS-II
      • Science
      • Design & Performance
      • Commissioning
    • LCLS-II-HE
      • Science
      • Design & Performance
      • Meetings and Reports
      • Instruments
      • Internal Site
    • MEC-U
      • Science Mission
      • Design & Performance
      • Workshops & Meetings
      • Publications
      • News
      • Resources & Photos
      • Internal Site
  • Departments
    • SRD Leadership
    • Atomic, Molecular, & Optical Sciences
      • Research Interests
      • People
      • Research Highlights
      • Attosecond Science Campaign
    • Biological Sciences & Sample Preparations
      • Sample Environment & Delivery
      • Sample Preparation Laboratories
      • Biolabs at the Arrillaga Science Center (ASC)
      • Equipment Inventory
      • Chemical Inventory
    • Chemical Sciences
      • Research Interests
      • People
      • News & Highlights
      • Publications
    • Material Sciences
      • Research Interests
      • People
    • Matter in Extreme Conditions
      • Research Interests
      • People
      • Publications
    • Laser Sciences
      • Research Interests
      • Laser Capabilities​
      • People
      • User Resources
    • Detectors
      • Technologies
      • People
      • User Resources
    • Experiment Data Systems
      • Infrastructure
      • People
      • Projects
      • User Resources
    • Experiment Control Systems
      • Leadership
  • News
    • LCLS Science SLAC News Feed
    • Announcements & Updates
    • External News Features
      • Archive
  • Links

Breadcrumb

  1. Home
  2. Instruments
  3. MEC (Matter In Extreme Conditions)
  4. …
Facebook Share X Post LinkedIn Share Email Send
  • chemRIXS
    • Science Goals
    • Experimental Methods
    • Specifications
    • Standard Configurations
    • Publications
  • CXI
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Publications
  • MEC
    • Science Goals
    • Experimental Methods
    • Specifications
    • Diagnostics & Components
    • Standard Configurations
    • Lasers & Beam Delivery
    • Publications
  • MFX
    • Science Goals
    • Experimental Methods
    • Specifications
    • Standard Configurations
    • Publications
  • qRIXS
    • Science Goals
    • Experimental Methods
    • Layout & Specifications
    • Capabilities
  • TMO
    • Science Goals
    • Layout & Specifications
    • Standard Configuration
    • Publications
  • TXI
    • Science Goals
    • Experimental Methods
    • Layout & Specifications
  • XCS
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Operation Modes
    • Publications
  • XPP
    • Science Goals
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Publications
  • MeV-UED
    • Specifications
    • Run 6 Scientific Capabilities
    • Schematics
    • Endstations
    • Proposals
    • Proposal Review Process
    • Schedule
    • Publications
  • LCLS-II-HE
  • DXS
    • Science Goals
    • Experimental Methods
    • Specifications
  • Instrument Maps
  • Standard Configurations

MEC Diagnostics & Components

The following tabs provide an overview of  X-ray beamline components, in-house experimental diagnostics, and  standard optical beam delivery platforms at MEC. Additional technical details, CAD drawings and analysis methods (when available) for the components presented below may be found on the MEC Confluence website (under construction). An overview of the MEC instrument is published in a 2015 JSR article. 

  • Diagnostics
  • Beamline components

XRD diffraction

3D model of XRD detectors in standard configuration

X-ray Diffraction can be performed with the use of ePix10k detectors arranged around the interaction point to reach the desired 2θ and φ coverage. MEC has 4 specialized ePix10k designated for diffraction diagnostic in a high EMP environment, having superior shielding to standard ePix10k quads, and for higher photon energies, having 2x thicker silicon sensors (1 mm). The detectors are mounted on dedicated holders allowing removal and kinematic repositioning of the detector on its mount. This also allows the detectors to be mounted substantially differently from the standard configuration arrangement. 

VISAR

Top schematic view of VISAR next to MEC beamline

A line-imaging velocity interferometer system for any reflector (VISAR) is a widely used optical interferometric diagnostic for dynamic (e.g. shock) experiments. For opaque targets, VISAR is capable of determining shock speeds by detecting shock breakout times as a function of target thickness. In addition, free surface expansion velocities can be determined from measurement of the phase introduced in the probe beam due to the surface motion. The VISAR in the MEC station has spatial resolution of 10 µm and a temporal resolution of 10 ps, with time window ranging from 1 ns to 1 ms, a field of view of 1 mm, and a minimal velocity per fringe of 0.5 km/s/fringe.

More details here

Von Hamos X-ray Thompson Scattering Spectrometers

High energy and low energy Von Hamos spectrometer renderings

MEC provides standard spectrometers for use in X-ray Thomson Scattering  from dense plasmas or compressed targets.  These spectrometers use the von Hamos geometry: a cylindrically curved crystal produces a line focus with the measured X-ray spectrum dispersed along the line, and captured onto a CCD. Possible crystal choices include highly oriented pyrolytic graphite (HOPG), germanium, and silicon. Starting from run 18, the LCLS X-ray polarization is vertical, and the spectrometers are designed to operate in the horizontal plane; changes to the observed k-vector must be done manually. MEC has available two standard spectrometers covering the photon range from 4-8 keV, and one covering the range of 8-24 keV.

 

MEC X-ray Imager

3D isometric render of the MXI

This in-house system can be used to image phenomena with spatial resolution better than 500 nanometers and temporal resolution better than 100 femtoseconds. It was designed for studies relevant to High Energy Density Science, such as imaging shock fronts, phase transitions, void collapses, etc. The in-chamber motorized Be CRL mount known as the MEC X-ray Imager (MXI) flexibly positions up to 3 lens stacks over a wide range within the chamber. It is combined with a flight tube with an imaging platform at the end that uses a YAG screen and various optical microscopes, including an Optique Peter, or else direct detection on various X-ray cameras. The standard imaging plane position for the optics platform is ~4.2 m past the target.  The MXI capabilities are published in Scientific Reports (link to article).

X-ray Transmission Crystal Spectrometer (XTCS)

Photo of XTCS spectrometer

This spectrometer has been designed to enable high resolution hard X-ray spectroscopy in harsh EMP and bremsstrahlung environment, as those found during the interaction of the high intensity laser with solid matter. It uses a Cauchois quartz crystal (the crystal plan are perpendicular to the crystal surface) cylindrically bent allowing the insertion of tungsten slits at the focus of the rays. The spectrometer usually covers >1keV spectral range centered on the central photon energy ranging from 6 to 21 keV at high resolution. When low resolution is needed, the spectral range and throughput is greatly increased at the expense of the spectral resolution. The weight of the fully shielded device is about 350 lbs but can be slid on the optical table and is compatible with all the standard platforms.

Target Chamber

Iso view of MEC target chamber

The MEC target chamber is a cylindrical vacuum vessel of 1 inch aluminum that operates in the high vacuum regime using turbo pumps.  It has 10 top port, 8 side port, and 6 doors, all oriented towards target chamber. It contains an aluminum breadboard of approximately 2 m diameter, with a 1 inch ¼-20 bolt pattern. The breadboard legs extend to the feet of the vessel and are otherwise isolated from the chamber walls, minimizing shifting during pumpdown.  In the middle of the chamber there is a motorized target alignment stage with 6 degrees of freedom.

FDI

FDI

Note: the FDI diagnostic is decommissioned. Please contact an instrument scientist if you are interested in having it available for a future run.

The primary object of the Fourier Domain Interferometer (FDI) diagnostic is to measure the phase and amplitude of the reflection of a femtosecond laser of the target. The phase information is extracted, by interfering two time-delayed pulses (one typically before, and the other after an incident pump laser pulse) in a spectrograph and gives information about the motion of the critical density surface of the target. The FDI at MEC is based on a design that originates from LULI, Ecole Polytechique, Paris. It has a time resolution of 35 fs, and a spatial resolution of 10 µm, and can be used in a chirped configuration.

XUV Spectrometer

XUV Spectrometer

Note: The XUV spectrometer is decomissioned. Please contact an MEC instrument scientist if you are interested in having it available for a future run.

The XUV Spectrometer for the Matter in Extreme Conditions (MECI) instrument is a diagnostic instrument for MECI experiment to resolve emissions in the XUV regime. It sits inside the MEC target chamber, has a high collection efficiency, wavelength range of 7-35 nm, and resolution of 0.08 nm. It is based on a design by DESY and the University of Jena (R.R. Fauestlin et al, J. Inst., 5, p02004).

LUSI Pulse Picker

Attenuator/Pulse Picker Assembly
Attenuator/Pulse Picker Assembly

A single pulse shutter is used to allow only a single FEL pulse to pass through to the experimental chambers. A millisecond shutter from azsol GmbH is incorporated into a vacuum chamber on a translation stage to allow insertion into the beam. It can be operated up to 10 Hz.

LUSI Attenuators

A set of silicon foils of varying thicknesses is used to tailor the intensity of the LCLS beam. Multiple attenuation factors is possible by introducing any desired combination of foils into the LCLS beam path. Ten foils of different thicknesses is provided and can be used in any combination.

LUSI Guard Slits

Guard Slits
Guard Slits

Cylinders of 3 mm diameter made of silicon nitride (Si3N4) and or Tungsten is used to slit the beam. Silicon nitride will not get damaged by the LCLS beam downstream of the Near Experimental Hall, while the Tungsten slits behind the Silicon nitride will remove the Higher harmonics.

LUSI Pop-in Profile-Intensity Monitors

Profile/Intensity Monitor Combo
Profile/Intensity Monitor Combo

The spatial profile of the LCLS beam is measured at various locations along the MEC beamline using a scintillating screen and a high resolution camera-lens combination. The screen is mounted on a translation stage to allow insertion into the beam. The beam profile measurement is destructive of the beam and is used for alignment and troubleshooting procedures.

LUSI Pop-in Intensity Monitor

Pop-in Intensity Monitor
Pop-in Intensity Monitor

The integrated intensity of the LCLS beam is measured at various locations along the MEC beamline using a photodiode which is mounted on a translation stage to allow insertion into the beam. The intensity measurement is destructive of the beam and is used for alignment and troubleshooting procedures.

LUSI Intensity-Position Monitor

Intensity-Position Monitor
Intensity-Position Monitor

A thin foil allowing most of the beam to be transmitted is used to measure the LCLS pulse energy on a shot-to-shot basis. Compton back-scattering from the thin foil is measured using a set of diodes located upstream of the foil. The sensing area of the diodes is facing the foil and they is place in a tiled arrangement leaving a hole in the middle. The integrated intensity of all the diodes provide a measurement of the beam intensity on every pulse. The relative signal from each tile is used to get a measurement of the beam position.

LUSI X-ray Focusing Lens system

Compound refractive lenses made of Beryllium is used to produce a 1 µm focus in the MEC Target chamber. An translation stage allows one of three stacks of lenses to be selected which allows focusing of photon energies from 4 to 8 keV. The lenses is approximately 4 m from the target chamber center. Focusing below 4 keV is in principle possible but incurs a large intensity penalty due to the absorption below this energy. 

X-ray Focusing Lens System
X-ray Focusing Lens System
Lens Stacks
Lens Stacks

Time Tool

Time Tool
Time Tool

Synchronization of the short pulse laser is performed by spatial encoding of the arrival time of the X-rays backilluminated by the compressed optical laser. The collimated X-rays impinge on a thin piece of sillicon nitride membrane exciting electrons into the valence band. This non-destructive excitation temporarily change the index of refraction of the material to the short pulse optical laser wavelenght which thus becomes opaque when traversing the material. As the silicon nitride foil is placed at 45° to the incomping X-rays, the X-rays first change the index of refraction at the top of the foil, while the bottom sees a change only later, when the bottom part of the X-ray pulse arrives on the target. This geomtry spatially encodes the arrival time and allows non-intrusive sub-ps shot-to-shot measurement of the jitter or drift in the pulses syncrhonization.

MEC CONTACTs 

Eric Galtier

MEC Instrument Lead
(650) 926-6227  
egaltier@slac.stanford.edu

Ariel Arnott

Area Manager
(650) 926-2604  
amarnott@slac.stanford.edu

Gilliss Dyer

MEC Department Head
(650) 926-3414  
gilliss@slac.stanford.edu

Hae Ja Lee

Lead Scientist 
(650) 926-2049  
haelee@slac.stanford.edu

Philip Heimann

Senior Scientist 
(650) 926-8772  
paheim@slac.stanford.edu

Dimitri Khaghani

Staff Scientist
(650) 926-5009  
khaghani@slac.stanford.edu

Bob Nagler

Staff Scientist
(650) 926-3810  
bnagler@slac.stanford.edu

Nick Czapla

Associate Laser Scientist
(650) 926-4314  
nczapla@slac.stanford.edu

Nina Boiadjieva

Staff Engineer
(650) 926-4035  
ninab@slac.stanford.edu

Peregrine McGehee

Staff Engineer
(650) 926-1631  
peregrin@slac.stanford.edu

Philip Hart

Staff Engineer
(650) 926-2813  
philiph@slac.stanford.edu

Marc Welch

Staff Engineer
(650) 926-3754  
mwelch@slac.stanford.edu

Jonathan Ehni

Science & Engineering Associate
(650) 926-4562  
jonehni@slac.stanford.edu

-

MEC Control Room
(650) 926-7970  
MEC Hutch
(650) 926-7974  
Vestibule
(650) 926-7976

MEC LOCATION 

MEC location in Far Experimental Hall (FEH), Hutch 6
Far Experimental Hall (FEH), Hutch 6
Complete LCLS Instrument Map
Complete Instrument Map

Become A user

SVG

Review LCLS Schedules

Review Info on Proposals

Review LCLS Policies

Review Machine FAQ, Parameters, Status

Register as User and Submit Proposal

Subscribe to LCLSUO E-mail List

Confirm User Agreements

Industry - Research Partnerships

LCLS | Linac Coherent Light Source
2575 Sand Hill Road MS103
Menlo Park, CA 94025
  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • Youtube
  • LinkedIn
  • Staff portal
  • Privacy policy
  • Accessibility
  • Vulnerability disclosure
SLAC
  • SLAC home
  • Maps & directions
  • Emergency info
  • Careers

© 2025 SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy Office of Science.

Stanford University U.S. Department of Energy
Top Top
Back to top Back to top