Skip to main content
SLAC National Accelerator Laboratory
LCLSLinac Coherent Light Source

User Portal Login   |  LCLS Internal Site

  • About
    • Learn about XFELs
    • Organizational Chart
    • People & Committees
      • Leadership
      • Users' Executive Committee
      • Scientific Advisory Committee
      • LCLS Detector Advisory Committee
      • Proposal Review Panel
      • SLAC Photon Science Faculty
      • Users' Recognition Award
      • Young Investigator Award
    • Strategic Plan 2023-2028
    • Our Science
    • Internships
      • Intern Testimonials
      • Summer Student Poster Sessions
    • Jobs
    • Multimedia
      • Virtual Tours
      • Fact Sheets & Infographics
      • Image Gallery
      • Youtube Videos
    • Coming to SLAC
    • Contact Us
  • User Resources
    • User Research Administration (URA) Office
    • Schedules
    • Proposals
      • Run 26 Proposal Call
      • Proposal Preparation Guidelines
      • MeV-UED Proposals
      • Proposal Review Process
      • Universal Proposal System (UPS)
      • Submit Proposal
      • Archived Proposal Calls
    • User Agreements
    • Policies
    • Proprietary Research
    • Safety & Training
      • Work Planning & Control
      • LCLS Building Orientation
      • Hutch 6 Non-Permit Confined Space Training
      • Sample Delivery Training
      • Sample Prep Lab Training
    • SLAC User Access Requirements
      • Computer Accounts
      • Data Collection & Analysis (PCDS)
      • DAQ
      • Shipping Equipment & Materials
      • Financial Accounts
    • Links By Category
  • Publications
    • LCLS Publications
    • Search Publications
    • Submit New Publication
    • Archived Publications
  • Instruments
    • chemRIXS
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • CXI
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MEC
      • Science Goals
      • Experimental Methods
      • Specifications
      • Diagnostics & Components
      • Standard Configurations
      • Lasers & Beam Delivery
      • Publications
    • MFX
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
      • MFX Team
    • qRIXS
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
      • Capabilities
    • TMO
      • Science Goals
      • Layout & Specifications
      • Standard Configuration
      • Publications
    • TXI
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
    • XCS
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Operation Modes
      • Publications
    • XPP
      • Science Goals
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MeV-UED
      • Specifications
      • Run 6 Scientific Capabilities
      • Schematics
      • Endstations
      • Proposals
      • Proposal Review Process
      • Schedule
      • Publications
    • LCLS-II-HE
    • DXS
      • Science Goals
      • Experimental Methods
      • Specifications
    • Instrument Maps
    • Standard Configurations
  • Machine
    • Machine Status
    • Machine FAQ (NC Linac)
    • Parameters
    • Schedules
  • Projects
    • LCLS-II
      • Science
      • Design & Performance
      • Commissioning
    • LCLS-II-HE
      • Science
      • Design & Performance
      • Meetings and Reports
      • Instruments
      • Internal Site
    • MEC-U
      • Science Mission
      • Design & Performance
      • Workshops & Meetings
      • Publications
      • News
      • Resources & Photos
      • Internal Site
  • Departments
    • SRD Leadership
    • Atomic, Molecular, & Optical Sciences
      • Research Interests
      • People
      • Research Highlights
      • Attosecond Science Campaign
    • Biological Sciences & Sample Preparations
      • Sample Environment & Delivery
      • Sample Preparation Laboratories
      • Biolabs at the Arrillaga Science Center (ASC)
      • Equipment Inventory
      • Chemical Inventory
    • Chemical Sciences
      • Research Interests
      • People
      • News & Highlights
      • Publications
    • Laser Sciences
      • Research Interests
      • Laser Capabilities​
      • People
      • User Resources
    • Material Sciences
      • Research Interests
      • People
      • Research Highlights
    • Matter in Extreme Conditions
      • Research Interests
      • People
      • Publications
    • Detectors
      • Technologies
      • People
      • User Resources
    • Experiment Control Systems
      • Leadership
    • Experiment Data Systems
      • Infrastructure
      • People
      • Projects
      • User Resources
      • Publications
  • News
    • Science News
    • Announcements & Events
    • External News Features
      • Archive
  • Links

Breadcrumb

  1. Home
  2. Instruments
  3. TMO (Time-resolved AMO)
  4. …
Facebook Share X Post LinkedIn Share Email Send
  • chemRIXS
    • Science Goals
    • Experimental Methods
    • Specifications
    • Standard Configurations
    • Publications
  • CXI
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Publications
  • MEC
    • Science Goals
    • Experimental Methods
    • Specifications
    • Diagnostics & Components
    • Standard Configurations
    • Lasers & Beam Delivery
    • Publications
  • MFX
    • Science Goals
    • Experimental Methods
    • Specifications
    • Standard Configurations
    • Publications
    • MFX Team
  • qRIXS
    • Science Goals
    • Experimental Methods
    • Layout & Specifications
    • Capabilities
  • TMO
    • Science Goals
    • Layout & Specifications
    • Standard Configuration
    • Publications
  • TXI
    • Science Goals
    • Experimental Methods
    • Layout & Specifications
  • XCS
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Operation Modes
    • Publications
  • XPP
    • Science Goals
    • Experimental Methods
    • Specifications
    • Components
    • Standard Configurations
    • Publications
  • MeV-UED
    • Specifications
    • Run 6 Scientific Capabilities
    • Schematics
    • Endstations
    • Proposals
    • Proposal Review Process
    • Schedule
    • Publications
  • LCLS-II-HE
  • DXS
    • Science Goals
    • Experimental Methods
    • Specifications
  • Instrument Maps
  • Standard Configurations

TMO Standard Configuration

Run 26 Standard Configurations

The Time-resolved Atomic, Molecular and Optical Science instrument (TMO) supports a wide range of science including gas phase photochemistry, attosecond electron dynamics, and the study of complex systems at the nanoscale. This includes the use of nonlinear and strong-field X-ray processes. The instrument features two interaction points appropriately named interaction point 1 (IP1) and interaction point 2 (IP2). TMO makes use of the LCLS soft X-ray undulators, providing horizontally polarized X-rays in the photon energy range from 250 eV to 1800 eV. During Run 26 TMO will operate using the normal-conducting accelerator providing a maximum pulse rate of 120Hz. There will be three standard configurations offered at the first interaction point (IP1): the magnetic bottle electron time-of-flight spectrometer (MBES), the energy- and angle- resolving electron spectrometer (MRCO), and the co-axial velocity map imaging (cVMI) instrument. The DREAM instrument at IP2 will not be offered for Run 26. 

Key Performance Parameters for Run 26

Run 26 will make use of the normal-conduction accelerator which operates at repetition rates up to 120 Hz. You can find more information on the TMO beam line devices on our layout page. For more information on beamline devices or X-ray parameters available during Run 26, please contact James Cryan (jcryan@slac.stanford.edu). 

  • Interaction Point 1
  • Interaction Point 2
  • Not Planned for Run

X-ray Parameters

Repetition rate (Hz)

120 Hz

Energy Range (eV)

200 - 2000

Pulse Duration

20 fs (nominal)

Advanced Capabilities

Tunable to 5 fs

< 1 fs (XLEAP-II)

Energy per pulse

> 1000 µJ

Scales linear with
pulse duration

~20 µJ

Bandwidth (FWHM)

0.5 %

0.5 %

>1%

Repetition rate (Hz)

 120 Hz

120 Hz

120 Hz

Spot Size, FWHM (range)

1.0 - 200 um diameter

Polarization

Linear, Horizontal

Two Pulse Mode
(jcryan@slac.stanford.edu
for more information)

~ 10 µJ / pulse with tunable delay via split undulator method.
The split undulator method provides a minimum delay of
~10 fs for arbitrary wavelength. For harmonic operation (ω/2ω, ω/3ω)
the minimum delay is ~300 as.

The OPCPA laser system at IP1 offers short (< 25 fs) 800 nm laser pulses. Harmonics of these pulses can be generated (400/266 nm). 

Laser Parameters

Repetition rate (Hz)

Synchronized up to 33 kHz

Wavelength

800 nm

400 nm

266 nm

 

1300-2400 nm

Pulse Duration

< 25 fs

< 30 fs

< 30 fs

< 100 fs

Energy per pulse (on target)

< 600 µJ

< 100 µJ

~ 10 µJ

< 130 µJ (signal)
>10 µJ (idler)

Spot Size, FWHM (800 nm)

50 to 100 um

Polarization

Variable: linear, circular

Angle

~0.5o angle with X-ray beam

Arrival Time Monitor

< 20 fs accuracy in X-ray/laser arrival time tagging should be available. Overall temporal resolution will be dependent on machine and instrument configuration

For more information on the available laser parameters (and to discuss more advanced capabilities), please contact Mat Britton (matb@slac.stanford.edu) and James Cryan (jcryan@slac.stanford.edu).

MBES: Magnetic Bottle Electron Time-of-Flight Spectrometer in IP1

For Run 26 TMO will provide a magnetic bottle electron spectrometer. The spectrometer is coupled to a dual anode micro-channel plate detector allowing for some radial-discrimination of the measured spectrum.
The end station features:

  • Gas targets:
    • Either heated gas needle or
    • In-vacuum oven
  • 2m flight tube with retardation section, >50% collection efficiency
    • ​Resolution DE/E <5%
    • Retardation up to 200 eV
  • Ion extraction plate and coincident Ion ToF capability
  • Electron Detector
    • The spectrometer is coupled to a dual anode micro-channel plate detector allowing for some radial-discrimination
    • We continue to develop advanced charge particle detectors and additional detection capabilities can be discussed with the instrument team. 

MRCO: Angle-resolving Electron Time-of-Flight Detector in IP1

In Run 26 TMO will provide and angular array of electron time-of-flight spectrometers offering high energy- and angular-resolution for electron spectroscopy. This end station features:

  • Gas targets:
    • Heated gas needle
  • 16 eToF spectrometers, ~1% total collection efficiency
    • Resolution DE/E < 1%
    • Retardation up to 2000 eV
    • Angular Acceptance 1.5o - 3.0o cone angle, per ToF

cVMI: Co-axial Velocity Map Imaging Spectrometer at IP1

In Run 26 TMO will offer the coaxial VMI (cVMI) endstation which provides an electron VMI spectrometer where the ionizing laser source propagates along the symmetry axis of the spectrometer. The end station features:

  • Gas Targets:
    • skimmed molecular beam
    • pulsed gas delivery with Even-Lavie nozzle
  • Charged Particle Detection:
    • 80 mm microchannel plate coupled to a fast phosphor screen imaged by a CCD camera.  

Photon Spectrometer Diagnostic

In Run 25 we will offer a photon spectral diagnostic downstream of IP1. This device uses an off-axis Fresnel Zone-Plate (FZP) to spectrally disperse the incident X-ray onto a high repetition rate detector. A line-scan camera at maximum repetition rate of ~100 kHz will be used to measure the single-shot spectra at the absorption edges of carbon, nitrogen, oxygen and neon elements. This compact photon spectrometer has a designed resolving power of ~1000 which we have demonstrated at the oxygen K-edge.

Not Offered for Run 26

X-ray Parameters

Repetition rate (Hz)

nominally 33 kHz, depending on machine performance

Energy Range (eV)

200 - 1300

Pulse Duration

20 fs (nominal)

Advanced Capabilities

Tunable to 5 fs

< 1 fs (XLEAP-II)

Energy per pulse

> (160-60) µJ

Scales linear with
pulse duration

~10 µJ

Bandwidth (FWHM)

0.5 %

0.5 %

>1%

Repetition rate (Hz)

> 30 kHz

> 30 kHz

> 5 kHz

Spot Size, FWHM (range)

0.5 - 10 um diameter

Polarization

Linear, Horizontal

Two Pulse Mode
(jcryan@slac.stanford.edu
for more information)

< 10 µJ / pulse with tunable delay via split undulator method.
The split undulator method provides a minimum delay of
~10 fs for arbitrary wavelength. For harmonic operation (ω/2ω, ω/3ω)
the minimum delay is ~300 as.

The Yb-based laser system at IP2 will offer short (< 35 fs) 1030 nm laser pulses. Harmonics of these pulses can be generated (515/343/258 nm). 

Laser Parameters

Repetition rate (Hz)

Standard capability: Synchronized up to 33 kHz. 
Operation up to 100 kHz can be considered

Wavelength

1030 nm

515 nm

343 nm

258 nm

Pulse Duration

< 30 fs

< 40 fs

< 40 fs

< 40 fs

Energy per pulse (on target)

> 700 µJ

> 200 µJ

> 50 µJ

>5 µJ

Spot Size, FWHM (1030 nm)

10 to 50 um

Polarization

Variable: linear, circular

Angle

co-linear with X-ray beam

Arrival Time Monitor

< 20 fs accuracy in X-ray/laser arrival time tagging should be available. Overall temporal resolution will be dependent on machine and instrument configuration

For more information on the available laser parameters (and to discuss more advanced capabilities), please contact Mat Britton (matb@slac.stanford.edu) and James Cryan (jcryan@slac.stanford.edu).

DREAM: Dynamic REAction Microscope at IP2

The Dynamic REAction Microscope (DREAM) end station  features joint ion/electron detection each with a 120 mm Hexanode delay-line detector.  

This end station features:

  • Gas Targets:
    • Skimmed molecular beam source
  • Charged Particle Detection:
    • 5 cm, short arm spectrometer (electron/ high-energy ions)
    • 27 cm, long arm spectrometer (lower energy ions)
    • Dual 120 mm Hexanode delay-line detectors.
  • Reaction Microscpe (DEAM)
  • Double-sided VMI in LAMP (dVMI)
  • Kaesdorf Electron Spectrometer
  • Photon Imaging Detectors

Non-Standard Configurations

For non-standard configuration or more information contact James Cryan (jcryan@slac.stanford.edu). The full capability set for the TMO instrument is detailed on the Layout Page

TMO Contacts

James Cryan

TMO Instrument Lead Scientist
(650) 926-3290   
jcryan@slac.stanford.edu

Taran Driver

Instrument Scientist   
tdd14@slac.stanford.edu

Razib Obaid

Instrument Scientist   
robaid@slac.stanford.edu

Ming-Fu Lin

Instrument Scientist   
(650) 926-2586   
mfucb@slac.stanford.edu

Xiang Li

Instrument Scientist   
xiangli@slac.stanford.edu

Kurtis Borne

Research Associate  
kborne@slac.stanford.edu

Jeff Aldrich

Area Manager 
jaldrich@slac.stanford.edu

Mat Britton

Laser Scientist   
(650) 926-3769
matb@slac.stanford.edu

Mike Glownia

Laser Scientist   
jglownia@slac.stanford.edu

Eric Konzelmann

Mechanical Engineer   
(615) 715-6197
erickonz@slac.stanford.edu

Basil Aljamal

Controls Engineer
(650) 926-3397
baljamal@slac.stanford.edu

Tong Ju

Controls Engineer
tongju@slac.stanford.edu

Peter Noonan

Science & Engineering Associate  
(650) 926-4361
pnoonan@slac.stanford.edu

LCLS | Linac Coherent Light Source
2575 Sand Hill Road MS103
Menlo Park, CA 94025
  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • Youtube
  • LinkedIn
  • Staff portal
  • Privacy policy
  • Accessibility
  • Vulnerability disclosure
SLAC
  • SLAC home
  • Maps & directions
  • Emergency info
  • Careers

© 2025 SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy Office of Science.

Stanford University U.S. Department of Energy
Top Top
Back to top Back to top