Skip to main content
SLAC National Accelerator Laboratory
LCLSLinac Coherent Light Source

User Portal Login   |  LCLS Internal Site

Main navigation

  • About
    • Organizational Chart
    • People & Committees
      • Leadership
      • Users' Executive Committee
      • Scientific Advisory Committee
      • LCLS Detector Advisory Committee
      • Proposal Review Panel
      • SLAC Photon Science Faculty
      • Users' Recognition Award
      • Young Investigator Award
    • Strategic Plan 2023-2028
    • Our Science
    • Internships
      • Intern Testimonials
      • Summer Student Poster Sessions
    • Jobs
    • Multimedia
      • Virtual Tours
      • Fact Sheets & Infographics
      • Image Gallery
      • Youtube Videos
    • Coming to SLAC
    • Contact Us
  • User Resources
    • User Research Administration (URA) Office
    • Schedules
    • Proposals
      • Proposal Preparation Guidelines
      • MeV-UED Proposals
      • Proposal Review Process
      • Run 25 Proposal Call
      • Universal Proposal System (UPS)
      • Submit Proposal
      • Archived Proposal Calls
    • User Agreements
    • Policies
    • Proprietary Research
    • Safety & Training
      • Work Planning & Control
      • LCLS Building Orientation
      • Hutch 6 Non-Permit Confined Space Training
      • Sample Delivery Training
      • Sample Prep Lab Training
    • SLAC User Access Requirements
      • Computer Accounts
      • Data Collection & Analysis (PCDS)
      • DAQ
      • Shipping Equipment & Materials
      • Financial Accounts
    • Links By Category
  • Publications
    • LCLS Publications
    • Search Publications
    • Submit New Publication
    • Archived Publications
  • Instruments
    • chemRIXS
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • CXI
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MEC
      • Science Goals
      • Experimental Methods
      • Specifications
      • Diagnostics & Components
      • Standard Configurations
      • Lasers & Beam Delivery
      • Publications
    • MFX
      • Science Goals
      • Experimental Methods
      • Specifications
      • Standard Configurations
      • Publications
    • qRIXS
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
      • Capabilities
    • TMO
      • Science Goals
      • Layout & Specifications
      • Standard Configuration
      • Publications
    • TXI
      • Science Goals
      • Experimental Methods
      • Layout & Specifications
    • XCS
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Operation Modes
      • Publications
    • XPP
      • Science Goals
      • Experimental Methods
      • Specifications
      • Components
      • Standard Configurations
      • Publications
    • MeV-UED
      • Specifications
      • Run 6 Scientific Capabilities
      • Schematics
      • Endstations
      • Proposals
      • Proposal Review Process
      • Schedule
      • Publications
    • LCLS-II-HE
    • DXS
      • Science Goals
      • Experimental Methods
      • Specifications
    • Instrument Maps
    • Standard Configurations
  • Machine
    • Machine Status
    • Machine FAQ (NC Linac)
    • Parameters
    • Schedules
  • Projects
    • LCLS-II
      • Science
      • Design & Performance
      • Commissioning
    • LCLS-II-HE
      • Science
      • Design & Performance
      • Meetings and Reports
      • Instruments
      • Internal Site
    • MEC-U
      • Science Mission
      • Design & Performance
      • Workshops & Meetings
      • Publications
      • News
      • Resources & Photos
      • Internal Site
  • Departments
    • SRD Leadership
    • Atomic, Molecular, & Optical Sciences
      • Research Interests
      • People
      • Research Highlights
      • Attosecond Science Campaign
    • Biological Sciences & Sample Preparations
      • Sample Environment & Delivery
      • Sample Preparation Laboratories
      • Biolabs at the Arrillaga Science Center (ASC)
      • Equipment Inventory
      • Chemical Inventory
    • Chemical Sciences
      • Research Interests
      • People
      • News & Highlights
      • Publications
    • Material Sciences
      • Research Interests
      • People
    • Matter in Extreme Conditions
      • Research Interests
      • People
      • Publications
    • Laser Sciences
      • Research Interests
      • Laser Capabilities​
      • People
      • User Resources
    • Detectors
      • Technologies
      • People
      • User Resources
    • Experiment Data Systems
      • Infrastructure
      • People
      • Projects
      • User Resources
    • Experiment Control Systems
      • Leadership
  • News
    • LCLS Science SLAC News Feed
    • Announcements & Updates
    • External News Features
      • Archive
  • Links

Breadcrumb

  1. Home
  2. LCLS-II: A World-Class Discovery Machine
  3. …
Facebook Share X Post LinkedIn Share Email Send
  • LCLS-II
    • Science
    • Design & Performance
    • Commissioning
  • LCLS-II-HE
    • Science
    • Design & Performance
    • Meetings and Reports
    • Instruments
    • Internal Site
  • MEC-U
    • Science Mission
    • Design & Performance
    • Workshops & Meetings
    • Publications
    • News
    • Resources & Photos
    • Internal Site

LCLS-II Instruments

LCLS-II will be a transformative tool for energy science, qualitatively changing the way that X-ray imaging, scattering and spectroscopy can be used to study how natural and artificial systems function. It will enable new ways to capture rare chemical events, characterize fluctuating heterogeneous complexes, and reveal quantum phenomena in matter, using nonlinear, multidimensional and coherent X-ray techniques that are possible only with X-ray lasers. This facility will operate in a soft X-ray range (250 eV to 1.5 keV), and will use seeding technologies to provide fully coherent X-rays in a uniformly spaced series of pulses with programmable repetition rate and rapidly tunable photon energies.

Instrument Names and Defining Capabilities 

NEH 1.1 or Time-resolved AMO (TMO)

NEH beamline 1.1 will support many experimental techniques not currently available at LCLS. High operational efficiency will be achieved through utilization of multiple fixed endstations. Stable beam trajectories will be provided through streamlined X-ray alignment to the fixed interaction points. Delivering the beam to only a few fixed locations will optimize optical laser experiments and setups.

Both the NAMASTE and the DREAM endstation will be configured to take full advantage of both the high per pulse energy from the copper accelerator (120 Hz) as well as high average intensity and high repetition rate from the superconducting accelerator.

Read more about NEH 1.1

NEH 1.2 or Tender X-ray Imaging (TXI)

Access to the tender X-ray spectral range (1000 eV-5000 eV) as well as the ability to simultaneously receive X-ray beams from both the hard X-ray undulator and soft X-ray undulator.

Read more about NEH 1.2

NEH 2.2

The combination of exceptionally high flux of monochromatic photons, far exceeding that at current state-of-the-art instruments, delivered in the form transform-limited femtosecond X-ray pulses, will make the NEH 2.2 Instrument at LCLS-II one with transformational capabilities. It will enable new ways to capture rare chemical events, characterize fluctuating heterogeneous complexes, and reveal quantum phenomena in matter, using multidimensional and coherent X-ray techniques that are possible only with X-ray lasers. This facility will provide access to the “soft X-ray” regime (250 eV to 1.6 keV) to provide fully coherent X-rays in a uniformly spaced series of pulses with programmable repetition rate and rapidly tunable photon energies.

Read more about NEH 2.2

LCLS Strategic Facility Development Plan

LCLS | Linac Coherent Light Source
2575 Sand Hill Road MS103
Menlo Park, CA 94025
  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • Youtube
  • LinkedIn
  • Staff portal
  • Privacy policy
  • Accessibility
  • Vulnerability disclosure
SLAC
  • SLAC home
  • Maps & directions
  • Emergency info
  • Careers

© 2025 SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy Office of Science.

Stanford University U.S. Department of Energy
Top Top
Back to top Back to top