Analytical Solutions for Temperature Distribution in Blocks and Application for LCLS II Optics

Jiya Janowitz1,2, Lin Zhang2

Physics Department, Material Science and Engineering Department, Stanford University, 430 Serra Mall, Stanford, CA 94305, USA
1Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
2zhanglin@slac.stanford.edu

Introduction
The high power X-ray laser produced by LCLS II will be focused using optics that must be cooled to prevent deformation and damage. There are several feasible cooling configurations; performance varies with choice. The goal of this project is to analytically solve for the heat distribution across a block for each cooling configuration. The analytical solutions will allow the most effective cooling system to be chosen for LCLS II optics.

Keywords: LCLS II, heat distribution, cooling, optics

Problem Setup
2D Steady State Full Bottom Cooling
3D Steady State Full Side Cooling
3D Steady State Bottom Cooling

Results
2D SS BC
\[T(x, z) = T_f + \frac{P_a}{k} \left[\frac{k}{h} + \frac{z}{h} \right] + \sum_{n=0}^{\infty} \frac{4P_a}{kL \omega_n} \sin \left(\frac{\omega_n h}{2} \right) \frac{1}{\sinh \left(\frac{\omega_n h}{2} \right)} \frac{\cosh \left(\frac{\omega_n h}{2} \right)}{\sinh \left(\frac{\omega_n h}{2} \right)} \cos \left(\omega_n x \right) \]

2D SS SC
\[T(x, z) = T_f + \sum_{n=0}^{\infty} \frac{4P_a}{k \alpha_n \omega_n} \sin \left(\frac{\omega_n h}{2} \right) \frac{1}{\sinh \left(\frac{\omega_n h}{2} \right)} \frac{\cosh \left(\frac{\omega_n h}{2} \right)}{\sinh \left(\frac{\omega_n h}{2} \right)} \cos \left(\omega_n x \right) \]

3D SS BC
\[T(x, y, z) = T_f + \frac{P_{am}}{k W} \left[\frac{k}{h} + \frac{z}{h} \right] + \sum_{n=0}^{\infty} \frac{4P_{am}}{k W L^2 \omega_n} \sin \left(\frac{\omega_n h}{2} \right) \frac{1}{\sinh \left(\frac{\omega_n h}{2} \right)} \frac{\cosh \left(\frac{\omega_n h}{2} \right)}{\sinh \left(\frac{\omega_n h}{2} \right)} \cos \left(\omega_n x \right) \]

\[+ \sum_{n=1}^{\infty} \frac{16P_{am}}{k W L \omega_n \beta_n} \sin \left(\frac{\omega_n h}{2} \right) \frac{1}{\sinh \left(\frac{\omega_n h}{2} \right)} \frac{\cosh \left(\omega_n h \right) - \frac{h}{\sinh \left(\omega_n h \right)} \sinh \left(\omega_n h \right) - \frac{h}{\sinh \left(\omega_n h \right)} \cosh \left(\omega_n h \right)}{\sinh \left(\omega_n h \right) + \frac{h}{\sinh \left(\omega_n h \right)} \cosh \left(\omega_n h \right)} \cos \left(\beta_n y \right) \cos \left(\beta_n y \right) \]

MATLAB Results

Conclusions
Analytical solutions were obtained for 2D and 3D, steady state and transient, bottom and side cooling. To verify the legitimacy of these solutions, MATLAB was used to graph the results. Bottom cooling solutions were confirmed by extending the size of the beam to the surface of the mirror, making the problem 1D. The next steps in this project are to continue coding and confirming analytical solutions for more complex problems.

Acknowledgments
Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.
*Lin Zhang, SLAC Engineering Seminar, 2015

Date: 08/30/2017