Hard X-Ray Instruments

Sebastien Boutet
Hard X-ray Department Head
The Hard X-Ray Instruments @ LCLS

http://lcls.slac.stanford.edu/Instruments.aspx
Hard X-ray mirror upgrades now operational have significantly improved acceptance and beam quality.

- Substantial impact in HXR near-field quality & efficiency
- New periscope to XCS creates “XPP-like” capability
New Modes of Operation and New Detector Capabilities

Attosecond Hard X-ray Capabilities

- **Extended photon energy range:** from 0.8–8 to 0.25–12.8 keV
- **Ir L_{III} RIXS**
- **Se K-edge SAD**

Huang et al., PRL 119, 154801 (2017)

ePix10k Detectors

- 10k photon dynamic range
- Likely available in Run 17

Jungfrau Detectors

- 0.5Mpixel and 1Mpixel available for experiments at atmospheric pressure

HXR Instruments

https://www.psi.ch/detectors/jungfrau
Femtosecond laser capabilities similar to CXI and NEH hutchess like XPP
 * Including time tool diagnostic
 * Multiple user and in-house experiments already performed with XCS laser
XCS Commissioned Upgrades
(ii) New Split and Delay System

- Energy Range: 7-12 keV
 - Delay range varies with photon energy
- Delay Range: -5 to 350 ps at 8 keV
 - Provides continuous coverage for each photon energy reaching beyond 1 ns at 7 keV.

Fully Commissioned in Run 15
Utilized for user experiments in Run 16
Available for proposals in Run 17

HXR Instruments
XCS Commissioned Upgrades (ii) New Split and Delay System

- Time zero confirmed with X-ray interference fringes

- Focus of each branch characterized with wavefront sensor

- Focus position stability \(\approx 1 \mu m \)
MFX New Capabilities

- Ceiling-mounted detector robot available for Run 17
- New large-area detector expected for Run 17
 - Rayonix 340-HS
 - 40 Hz capable with 3.6 Mpixels
XPP Standard Configurations:
https://lcls.slac.stanford.edu/instruments/xpp/standard-configurations

Standard Configuration 1: Time-resolved Pump-Probe Diffraction

- **X-rays**
 - 9.5 keV
 - 10-200 micron focus
 - Large Offset Double Crystal Monochromator

- **Laser wavelength**
 - 400/800 nm
 - OPA from 480-2400 nm

- **Time Tool (TT) diagnostics for laser arrival**
- **Kappa goniometer with 6-degrees of freedom with standard Huber goniometer head**
- **Cryostream available for cooling down to 100K**
- **Detectors**
 - Ceiling-mounted detector arm with CSPAD 140K
 - Diodes

Standard Configuration 2: X-ray Absorption Spectroscopy (XANES) of 3d Transition Metals

- **X-rays**
 - Energy: Tunable near element absorption edge
 - 2-100 micron focus
 - Channel-cut Monochromator

- **Laser wavelength**
 - 400/800 nm
 - OPA from 480-2400 nm

- **Time Tool (TT) diagnostics for laser arrival**
- **Round jets and flat jets for sample delivery**
- **Detectors**
 - ePix100
 - Diode

Chollet et al., Journal of Synchrotron Radiation 22, 503-507 (2015)
XCS Standard Configurations:
https://lcls.slac.stanford.edu/instruments/xcs/standard-configurations

Standard Configuration 1: Time-resolved solution scattering/emission spectroscopy
- X-rays
 - 9.5 keV
 - 2-100 micron focus
 - Monochromatic or Pink
- Laser wavelength
 - 400/800 nm
 - OPA from 480-2400 nm
- Time Tool (TT) diagnostics for laser arrival
- Helium purged sample chamber with liquid jet
- Von Hamos Spectrometer
- Detectors
 - CSPAD 2.3M for scattering
 - CSPAD 140K or ePix100 for XES

Standard Configuration 2: Time-resolved hard X-ray scattering and diffuse scattering measurements on thin films
- X-rays
 - 9.5 keV
 - 10-200 micron focus
 - Large Offset Double Crystal Monochromator
- Laser wavelength
 - 400/800 nm
 - OPA from 480-2400 nm
- Time Tool (TT) diagnostics for laser arrival
- Helium purged sample chamber with thin film mount at grazing incidence
- Detector
 - CSPAD 2.3M for scattering

MFX Standard Configurations:
https://lcls.slac.stanford.edu/instruments/mfx/standard-configurations

Standard Configuration 1: Goniometer system with sample mounting robot
- X-rays
 - 9.5 keV preferred but flexible
 - 2-100 micron focus with transfocator
 - Pink beam
- No Laser
- SSRL-SMB goniometer and sample exchange robot
 - Cryo or room temperature with humidity control capabilities
- Detectors
 - Rayonix 325 MX (1 Hz readout)
 - Possibly new Rayonix 340-HS (up to 40 Hz)

Standard Configuration 2: Helium-Rich Ambient (HERA) instrument for time-resolved liquid jet crystallography
- X-rays
 - 9.5 keV preferred but flexible
 - 2-100 micron focus with transfocator
 - Pink beam
- Nanosecond Laser Available
 - 410-2200 nm
- Helium-Rich Ambient (HERA) provides reduce background
- Supports a variety of liquid jets
- Detectors
 - Rayonix 170 HS (10 Hz readout)
 - CSPAD 2.3M (120 Hz)

Additional Required Acknowledgment
"The HERA system for in helium experiments at MFX was developed by Bruce Doak and funded by the Max-Planck Institute for Medical Research."

Boutet, Cohen & Wakatsuki, Synchrotron Radiation News 29, 23 (2016)
Standard Configuration: Serial Femtosecond Crystallography with Liquid Jet

- **X-rays**
 - 9.5 keV preferred but flexible
 - 1-2 micron focus with KB mirrors
 - Pink beam

- **Laser wavelength**
 - 400/800 nm
 - OPA from 480-2400 nm
 - ns laser possible (410-2200 nm)

- **Time Tool (TT) diagnostics for laser arrival**

- **CXI 1 micron Sample Chamber (SC1) with liquid jet**
 - Variety of jet systems supported

- **Detectors**
 - Front CSPAD 2.3M
 - Back CSPAD 2.3M available if necessary

Standard Configuration Parasitic: Serial Sample Chamber

- Will be used to perform “parasitic” Protein Crystal Screening
- Reuse the “spent” beam into a second independent experiment
- Used during almost all Standard Configuration primary experiments

Standard Configuration Parameter Tables

If multiple samples are planned, please add rows to the table and list all the samples proposed.

XPP Parameter Table (Run 17 Standard Configuration)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample(s) description</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Pulse Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Focal spot size 10 to 200 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical beam parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength [nm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Pulse Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Beam Time</td>
<td>Number of shifts (1 shift = 12 hr)</td>
<td></td>
</tr>
<tr>
<td>Any additional comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XCS Parameter Table (Run 17 Standard Configuration)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample(s) description</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Pulse Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Focal spot size 10 to 200 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical beam parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength [nm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Pulse Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Beam Time</td>
<td>Number of shifts (1 shift = 12 hr)</td>
<td></td>
</tr>
<tr>
<td>Any additional comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MFX Parameter Table (Run 17 Standard Configuration #1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample(s) description</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Pulse Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Focal spot size 10 to 200 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical beam parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength [nm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Pulse Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Beam Time</td>
<td>Number of shifts (1 shift = 12 hr)</td>
<td></td>
</tr>
<tr>
<td>Any additional comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CXI Parameter Table (Run 17 Standard Configuration #2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample(s) description</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Pulse Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Focal spot size 10 to 200 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical beam parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength [nm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Pulse Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Beam Time</td>
<td>Number of shifts (1 shift = 12 hr)</td>
<td></td>
</tr>
<tr>
<td>Any additional comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Table for the CXI Standard Configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample(s) description</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Pulse Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Focal spot size 10 to 200 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical beam parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength [nm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Pulse Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Beam Time</td>
<td>Number of shifts (1 shift = 12 hr)</td>
<td></td>
</tr>
<tr>
<td>Any additional comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table specific to each standard configuration required with standard configuration proposal submission.