Development of Micro Focusing System of UV Vis Spectra of Liquid Jet Samples

Saskia Vaillancourt, Leland Gee
LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025

Introduction

- Develop microfocused UV Vis system to measure UV Vis spectra of small round liquid jets (<100 microns)
- Liquid jet user experiments encounter problems with sample decay, light sensitivity, or damaged by oxygen exposure that are difficult to track during the experiment
- Multiple beam diameter & optic footprint combinations to ensure the experiment exposure that are difficult to track during

Design

- Ensured difficulty with aligning collimator and smaller size focusing assemblies, printed adapter to join them
- Three pairs of different focusing assembly sizes, a pair of optic collimators, and a pair of 50 micron fiber optic cables to create smallest beam size possible
- Needed better way to hold both collimators and focusing assembly in alignment with one another, designed and printed a "u-cage" to hold collimators using SolidWorks and Cura Ultimaker S5 printer
- Discovered that bringing beam into focus while maintaining alignment would be very difficult with rigid design, mounted optical lens on a manual XYZ stage and sample on manual sliding table

Beam Size

- Quantitative measurement of spot size at focal length to ensure it would be smaller than the size of the spot with normal artifact
- Encountered problems with sample decay, light sensitivity, or damaged by oxygen exposure that are difficult to track during the experiment
- Multiple beam diameter & optic footprint combinations to ensure the experiment exposure that are difficult to track during

UV Vis Spectrum

- Measured UV Vis spectrum of [Fe(bpy)]$^{2+}$ expected to see two different metal-ligand charge-transfer absorption bands at 522 nm and 354 nm
- Measured UV Vis spectrum of [Fe(bpy)]$^{2+}$ expected to see two different metal-ligand charge-transfer absorption bands at 522 nm and 354 nm
- Measured UV Vis spectrum of [Fe(bpy)]$^{2+}$ expected to see two different metal-ligand charge-transfer absorption bands at 522 nm and 354 nm

Conclusions

- Microspectrometer produces meaningfully accurate results that can communicate the state of a sample
- Beam size is reliable <50 microns for the smaller focusing assembly, and reliably <60 microns for the larger focusing assembly
- Compact, mobile, and affordable (with developing accuracy and precision), this microspectrometer has the potential to be a helpful and accessible resource to user groups in both online and offline experimentation who wish to verify the state of their sample

Further Considerations

- Eliminating the adapter by obtaining properly sized collimators could further reduce the spot size to be reliably <50 microns without sacrificing intensity of the beam
- A more powerful light source, such as a commercial supercontinuum white light laser would increase intensity of beam and quality of UV Vis spectrum
- Optomechanics or computerized motors to control optics would contribute to ease of alignment and repeatability

Acknowledgments

Thank you to the entire LCLS Research Internship Program and to my mentor Leland Gee for making this experience possible. The UV-Vis microspectrometer was supported by the National Institute of Health (NIH) Grant 1P41GM139687.