LCLS Run 25 Users Town Hall

February 6th 2025

Agenda

Time (PST)	Торіс	Presenter					
Plenary Session - <u>Join via Zoom >></u>							
9:00 am	Current LCLS Status & Plans	Mike Dunne Director, LCLS					
9:15 am	Universal Proposal System	Leilani Conradson / Paul Jones LCLS User Office					
9:23 am	User Executive Committee Update	Silvia Pandolfi LCLS UEC Vice Chair					
9:26 am	Short Proposal Program Update	Sandra Mous LCLS Scientist					
9:31 am	Accelerator Plans for Run 25	Axel Brachmann / Tim Maxwell Accelerator Dept. Head					
9:40 am	Soft X-ray Instrument Capabilities (Introduce breakouts)	James Cryan / Kristjan Kunnus /Georgi Dakovski TMO/chemRIXS/qRIXS Instrument Leads					
9:50 am	Hard X-ray Instrument Capabilities (Introduce Breakouts)	Sebastien Boutet Director of Operations					
9:55 am	Data systems	Jana Thayer Data Systems Dept. Head					
Breakout Sessions/Office Hours by Instrum	nent						
10:10 am - 11:00am	Session 1						
	•TMO <u>Join via Zoom >></u>	James Cryan					
	•MEC Join via Zoom >>	Eric Galtier					
	•MFX <u>Join via Zoom >></u>	Sebastian Dehe for Leland Gee					
	•qRIXS <u>Join via Zoom >></u>	Georgi Dakovski					
	•XCS/XPP Join via Zoom >>	Matthieu Chollet & Takahiro Sato					
	•chemRIXS Join via Zoom >>	Kristjan Kunnus					
	•CXI <u>Join via Zoom >></u>	Meng Liang					

Current LCLS Status & Plans

Mike Dunne LCLS Director February 6th 2025

Recent proposal statistics

SLAC

FY2024 was a productive year, with a return to the high levels of delivered hours and users seen in our peak historical years

- FY24: 920 unique users (37% remote) for 154 experiments
- FY24 estimated annual publications at a high level (203)
- FY24 facility hours (4005 = 3834 Cu + 171 SC)

SLAC

• **FY25 planned** facility hours rises to ~7000 (4600 Cu + 2400 SC)

Facility status – SC-based FEL

- Highlights in Run 23 include sustained 8 kHz and sub-fs pulses (XLEAP)
- Increase of beam power limit **from 5 kW to 16 kW** for Run 24
 - Allows beam repetition-rate increase to 33 kHz and/or increased beam charge
 - Ongoing work to increase linac energy and improve beam emittance
- Had to delay the restart of Run 23 in CY2025 due to vacuum leak in the SC linac gun
 - Curtailed the final set of experiments in December
 - Invasive repair needed (multi-week) to replace a ceramic RF window
 - Restart is now underway
 - User science from 1 March to 17 March
- Recovered some beamtime by starting Run 24 early and finishing later
 - Run 24 (SC) 24 March to 20 July
 - Run 24 (NC) 27 March to 20 July

Update on LCLS-II-HE downtimes, and impact on LCLS operations

An extended shutdown of the SC linac is needed (12 to 15 months)

- **<u>Timing</u>** of the Long Down Time (LDT) is driven by :
 - 1. LCLS-II-HE **Project readiness** for construction and installation work
 - 2. LCLS-SC beam commissioning to meet pre-determined performance goals (to reduce risk to HE)
 - 3. Delivery of LCLS-SC user science program (TMO, ChemRIXS, qRIXS)
- Start of LDT deferred to January 2026 to allow additional time for beam ramping and user science
- Run 25
 - Cu linac (hard X-ray) users: 2 Sept 2025 to 31 Jan 2026
 - SC linac (soft X-ray) users: 15 Sept 2025 to 19 Dec 2025
 - With the limited beamtime to SC users, we will ask the PRP to provide particular attention to "issues of
- c programmatic and community diversity, access to new instruments" to help ensure overall balance

Summary of highlights for Run 25

- Operation of **SC linac** at nominal 33 kHz (potential for higher rep-rate at constant power)
 - TMO-MRCO/MBES and TMO-DREAM
 - ChemRIXS with new high throughput SVLS spectrometer and upgraded detectors
 - qRIXS
- Performance of **Cu linac** expected to enable 20-25 keV (previously 18keV limit)
 - XCS, MFX, CXI, MEC
 - XPP not available due to upgrade for LCLS-II-HE
 - Transition of user science to XCS: please consult with the instrument science team!
- New Dataset and Screening (DC&S) proposal mechanism (1-2 shifts) to be treated separately to full-scale proposals

Universal Proposal System (UPS)

Paul Jones ^D <u>https://orcid.org/0000-0001-7538-4238</u> Leilani Conradson ^D <u>https://orcid.org/0000-0002-4261-7135</u>

February 6th 2025

What To Expect

	Sign in to ORCID	
mail or 16-digit C	RCID ID	
xample@email.co	rm or 0000-0001-2345-6789	
assword		
	SIGN IN	

Logging In

Authenticate into the system via your ORCiD credentials

Do not request a new ORCiD if you already have one - please use your existing ORCiD

Profile

Your UPS profile data is private and protected

Demographic data will only be used in aggregate

You decide how much info to share

Knowledge Base

Under development over time this will provide answers to FAQs

Fully searchable resources at your fingertips

Dashboards

Configurability to put information from your most-used facilities front and center

Important Notes

- ALL members of the proposal team PIs. Co-PIs and **Co-Proposers must register in UPS**
- Members of the proposal team can collaborate on draft proposals - once submitted, proposals cannot be edited
- Proposals not submitted by the submission deadline will be archived - they can be viewed, but not edited or re-used

Useful Resources:

- Register / Login to UPS: https://ups.servicenowservices.com/ups
- Further information and tutorial video: https://lcls.slac.stanford.edu/user-resources/proposals/uni versal-proposal-system-ups
- Contact the User Office with questions: lcls-user-office@slac.stanford.edu

Do not wait until the last minute to submit!

World class

fundamental properties of matter.

State-of-the-art synchrotron radiation light sources at

The free electron laser at LCLS generates ultra-bright,

ultrafast, high coherence pulses, with the MeV-UED

and brightness allowing scientists to probe the

offering a powerful "electron camera" to study

ultrafast atomic & molecular dynamics

APS and NSLS-II offer continuous spectrum, high flux

Learn more

- User facilities provide open access to specialized instrumentation to scientists from universities. national laboratories, and industry,
- For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature.
- Thousands of scientists conduct experiments at BES user facilities every year.

U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE X-RAY LIGHT SOURCES

Participating Facilities

This tool is currently being used to support the proposal submission and review processes for the following facilities

APS

The APS, at Argonne National Laboratory, is one of only four third-generation, hard x-ray synchrotron radiation light sources in the world. The 1,104-meter circumference facility-large enough to house a baseball park in its center-includes 34 bending magnets and 34 insertion devices, which has a capacity of at least 68 heamlines for experimental research

Privacy and Security Notice

Linac Coherent Light Source

- Create a free ORCID profile or use your existing ORCID iD to register to use the proposal system.
- Submit a proposal to request experimental time or submit a request against a proposal that has already heen awarded time
- Contact User Program staff with any questions they are there to help!

National Synchrotron Light Source II

NSLS-II

NSLS-II is a state-of-the-art, medium-energy electron storage ring (3 GeV) that generates ultrabright, highly stable beams of synchrotron light, ranging from infrared to hard x-rays. It came online in 2014 and currently operates 29 beamlines with a capacity for about 60 beamlines when fully built out.

Facility websites: APS | LCLS | NSLS-II

Need Help?

Universal Proposal System "Office Hours"

Date	Time
February 12, 2025	9:30 am Pacific Time
February 19, 2025	9:30 am Pacific Time
February 25, 2025	9:30 am Pacific Time
March 3, 2025	9:00 am Pacific Time
March 3, 2025	12:00 pm Pacific Time

Zoom links at: <u>https://lcls.slac.stanford.edu/news/lcls-run-25-call-proposals</u>

LCLS UEC (User Executive Committee)

Silvia Pandolfi, UEC Vice Chair February 6th, 2025

LCLS UEC (what is the role of UEC?)

UEC is here to represent you!

UEC meets monthly with LCLS Management

UEC communicates the needs and desires of users regarding:

- LCLS operating policies and use of LCLS
- user support
- other issues of concern to users

UEC assigns LCLS awards during the User Meeting

Current Members of UEC & meeting Minutes: <u>https://lcls.slac.stanford.edu/lclsuo</u>

Upcoming user meeting

2025 LCLS/SSRL Users' Meeting: 22nd-26th September

Call for User Meeting Workshops is open (until March 28th)!

https://forms.gle/qdUjAWTWynLLQ5sE6

Please feel free to contact the LCLS UEC members with any suggestions or questions!

E-mail suggestions to

LCLS UEC lcls-uec@slac.stanford.edu

or

User Office (lcls-user-office@slac.stanford.edu)

LCLS Run 25 Users Town Hall Dataset Collection & Screening

Sandra Mous February 6th, 2025

LCLS Short Proposal Program

- Offered alongside regular LCLS proposals
- Access mechanisms offered in the LCLS Run 24 Short Proposal Program:
 - **Sample Testing** (or Protein Crystal Screening PCS): ideal for new user groups to gain first experience with XFEL beamtime and obtain preliminary results
 - Data Set Collection: enables user groups to complete data collection or test mature projects with a limited amount of beamtime (up to 24 hours)
 - Rapid Access: for time-sensitive experiments, provides short-term scheduling and rapid turnaround

Unifying modes of access to LCLS

- Merging some of the short proposal programs simplifies the modes of access to LCLS
 - **Dataset Collection & Screening**: short beamtime for testing or collecting a dataset using standard configuration
 - **Rapid Access**: rolling review and short-term scheduling

Overview of changes to the program

- **Experimental requirements**: DC&S proposals will need to make use of a standard configuration already in place for a regular LCLS experiment to maximize the throughput of an existing set-up
 - A list of select hard X-ray configurations has been made available in the call for proposals
 - DC&S proposals will not be carried over if a suitable configuration is not available
 - To apply for a short amount of beamtime using a non-standard configuration (or configurations not listed in the call for DC&S proposals), users will be asked to submit a regular proposal
- **Proposal templates**: user groups are asked to make use of the templates provided in the proposal call
 - The template addresses key review criteria
- Alignment of submission deadline: DC&S proposals are due at the same time as regular proposals
- **Concurrent review**: DC&S proposals are reviewed by the PRP at the same time as regular proposals
 - This helps ensure proposals are reviewed on time for scheduling considerations
- **Ranking**: DC&S proposals will be ranked separately from regular proposals
 - Acceptance is dependent on the available shifts and set-ups and may not strictly reflect the PRP ranking

Availability

- Scientific areas
 - Biology
 - Materials Science
 - Solution Phase Chemistry and Biochemistry
 - Gas Phase Photochemistry
 - Matter in Extreme Conditions
- Frequently deployed configurations only
 - XCS: horizontal liquid jet for solution scattering and hard X-ray spectroscopy
 - MFX: horizontal liquid jet for solution scattering or crystallography
 - MFX: droplet-on-tape for crystallography
 - MFX: fixed targets in air
 - CXI: liquid jet in the micron-focus chamber (no pump laser)
 - CXI: gas phase scattering in the micron-focus chamber with 200 nm or 266 nm pump laser
 - MEC: X-ray diffraction with uniaxial compression
 - MEC: X-ray imaging with long pulse laser side irradiation

- Questions or feedback?
 - → Please reach out to Sandra Mous (<u>smous@slac.stanford.edu</u>) or respective instrument lead

LCLS Run 25 Users Town Hall Accelerator Update

Axel Brachmann, Tim Maxwell, Yuantao Ding February 6th, 2025

LCLS NC/SC Linac FEL Complex

Hard X-ray, Normal Conducting Linac Capabilities

HXR single-pulse SASE w/ NC Linac

Beam Parameters	Symbol	Symbol Cu-HXU		Unit
		$\Box \omega_{max}$	$\Box \omega_{\min}$	
Photon Energy	hω	25000	1000	eV
Fundamental wavelength	λ_r	0.5	12.4	Å
Final linac e- energy	ymc ²	16.5	3.5	GeV
FEL 3-D gain length	L_{c}	4	1	m
Peak power	P	20	80	GW
Pulse duration range (FWHM)		10	- 50	fs
Nominal pulse duration (FWHM)	$\Delta \tau_{r}$	~	·30	fs
Max Pulse Energy*	Ú	0.6	2	mJ
Photons per pulse*	Nγ	0.15	14	10 ¹²
Peak brightness*	$B_{bb,SASE}$	7800	425	10^{30} §
Average brightness (120Hz)*	$\langle B \rangle$	280	16	10^{20} §
SASE bandwidth (FWHM)	$\Delta \omega / \omega$	30	2	eV
Photon source size (rms)	σ	8	20	μm
Photon far field divergence (FWHM)	$\Theta_{_{FWHM,x,\infty}}$	1	12	µrad
Max. Beam Rate	$\varphi_{_{FEI}}$	1	20	Hz
Avg. x-ray beam power	P,	0.07	0.24	W
Linear Polarization (100%)	(P)	Ver	rtical	

*Assuming nominal duration and undulator strength \$Brightness units are photons/sec/mm²/mrad²/0.1%-BW

High photon energy (to 25 keV) and pulse energy (0.5-2mJ)

Varies w/ duration, energy, beamline transmission, etc.

SLAC

https://lcls.slac.stanford.edu/machine/parameters

Hard X-ray Self-Seeding (HXRSS)

Spectral brightness enhancement for narrow bandwidth experiments

- Updated for LCLS-II vertically polarized HXU (90° rotation of crystal optics)
- 3-6x spectral brightness at sample vs. SASE

Photon energy	4.5 – 11 keV		
Bandwidth (FWHM)	0.35 – 1.5 eV		
Max pulse energy	0.2 – 0.5 mJ		
Duration	30 fs		

Initial SASE passes diamond wake monochromator, narrow BW amplified in 2nd half of undulator

Full SASE vs. HXRSS average spectra at 11 keV

Short Pulses

- ~5-10 fs HXR pulses readily achievable with corresponding reduction in pulse energy (change of charge, use of "slotted foil")
- Methods are available for < **1 fs HXR pulses**, approaching single SASE spike limit

Technique	Min Pulse Duration	Energy/Pulse	single-spike rate
Slotted foil / optics / taper	400 as	5 uJ (76% fluct.)	65%
Non-linear bunch compression	200 as	10 uJ	45%
HXR XLEAP (experimental)			

Slotted foil inserted in beam to spoil lasing in time

Make short single or double pulses

Discuss special requirements with your LCLS POC

Advanced Multi-Pulse/Color Modes

Multiple accelerator-based means for x-ray pump, x-ray probe on variety of time scales

One electron bunch:

• Double slotted foil

Two electron bunches:

- fs spacing: Injector laser pulse splitting ("twin bunches")
- ns spacing: Multiple laser pulses at cathode ("two/multi bunches")

Two-bunch XTCAV Images (ns spacing)

Advanced Multi-Pulse/Color Modes

Multiple accelerator-based means for x-ray pump, x-ray probe on variety of time scales

Technique	Pulse Separation	Pulse Duration	Energy Separation	Max Energy/Pulse
Split Undulator SASE	0 - 30 fs	15 fs	Up to factor 1.2 ratio in photon energies	40 uJ (25 fs pulse duration)
Double Slotted Foil	7-20 fs	~ 10 fs	+/-1.5%	100-200 uJ
Twin Bunches				
Two SASE Pulses	20 - 125 fs	~ 10 fs	0.2-2%	0.3 mJ (20 fs duration)
With slotted foil (shorter pulses)	+/- 50 fs	~5-10 fs	~2%	40 u J
Two-(multiple) bunch				
Two bucket	350 ps increments, up to 120 ns	20 fs	~ 1%	0.5-1 mJ (30 fs duration SASE)
Multi bucket (4 or 8 bunches)	Two trains of 4 pulses. 700 ps between each pulse in the same train.	20 fs	~ 1%	To be tested

Discuss special requirements with your LCLS POC

Soft X-ray, Superconducting Linac Capabilities

SXR single-pulse SASE w/ SC Linac

Beam Parameters	Symbol	ool SC-SXU x-rays		Unit	
		h ω _{max}	$h\omega_{nominal}$	$h\omega_{min}$	
Photon Energy	hω	1300	800	200	eV
Fundamental wavelength	λ_r	9.5	15.5	62.0	Å
Final linac e- energy	ymc ²		3.5-4.0		GeV
FEL 3-D gain length	L_{c}		TBD		m
Peak power	P	3	2.5 - 7	8	GW
Pulse duration range (FWHM)			20 - 40		fs
Nominal pulse duration (FWHM)	$\Delta \tau_{f}$		20		fs
Max Pulse Energy*	U	0.06	0.05 - 0.14	0.16	mJ
Photons per pulse*	Nγ	0.28	0.4 - 1.1	5.0	10 ¹²
Peak brightness*	B_{hk}	20	8.6 - 24	1.7	10^{30} §
Average brightness* (@33 kHz)	$\langle B \rangle$	137	57 – 161	12	10^{20} §
SASE bandwidth (FWHM)	$\Delta \omega / \omega$	4	3	3	eV
Photon source size (rms)	σ		TBD		μm
Far field divergence (FWHM)	Θ _{FWHM,x,∞}		TBD		µrad
Max. Beam Rate	$\varphi_{_{EEI}}$	1,	000-40,000) **	Hz
Avg. x-ray beam power (@33kHz)	P_{x}	2.0	1.7-4.6	5.3	W
Linear Polarization (100%)	(<i>P</i>)		Horizonta	1	

Pulse energies of >100 μ J in <40 fs

https://lcls.slac.stanford.edu/machine/parameters

SLAC

*Assuming nominal duration and undulator strength

[§]Brightness units are photons/sec/mm²/mrad²/0.1%-BW

** Highest rate will depend on accelerator protection and beamline acceptance

SC Linac Beam Quality Ramp Up

• Projected intensity has been achieved at 70 pC in Run 23

*** Projected SC linac parameters depend on optimization of initial demonstrated performance

Shorter Pulses

- Laser heater shaping (few fs pulses) and XLEAP (sub-fs pulses) demonstrated with NC Linac
- XLEAP capability *demonstrated* to 1 fs and better w/ SC linac

Technique	Min Pulse Duration	Linac (Max Rate)	Energy range	Energy/Pulse	Single Spike rate
Laser Heater Shaping	< 8 fs	SC (1 kHz+)	SXR	10-20 uJ	TBD
XLEAP	< 1 fs (TBD)	SC (1 kHz+)	SXR	TBD	TBD

fs and sub-fs pulses demonstrated w/ SC linac in Run 23

Photon Energy Scanning

Linac+Und	Mode	Energy delta	Speed/step	Notes
NC + HXR	Und Gap (coarse)	20%	seconds	Range is performance limited
	Vernier (fine)	1-2%	milliseconds	
SC + SXR	Und Gap (coarse)	50-100%	seconds	Range is performance limited
	Vernier (fine)	1-2%	milliseconds	(Tested, affects performance)

User control of photon energy scans ready and available via new variable gap undulators

XTCAV: Femtosecond "streak camera" for e⁻ beam

- 120 Hz images of e⁻ beam time-energy distribution
- Observe energy loss due to FEL, calculate x-ray temporal profile shot-by-shot w/ fs resolution
- Available for recording/analysis at beamlines in coordination with ACR

- Rate: Up to 33 kHz delivery over Run 25
- Intensity/quality: Continued improvement for lower charge/duration
- Special capabilities for Run 25:
 - Photon energy scans
 - Short pulses (fs to sub-fs)

Communication with the Accelerator Team

• Weekly 'User Meeting' with the ACR team:

Wednesday before your experiment starts, share experiment background and summarize key x-ray parameters: photon energy, pulse energy, pulse length, other special conditions/requests important for FEL source requirements. (~10 min presentation each)

• LCLS POC is the conduit for communication with the Accelerator teams

Thank you and Good Luck

TMO in Run 25

LCLS Run 25 Users Town Hall

February 6th 2025 James Cryan and the TMO Team

TMO in Run 25

- We will offer a standard configuration for both IP1 (MRCO/MBES) and IP2 (DREAM)
 - Interaction points can not be operated simultaneously at this point.
 - We hope to develop this capability.
- Expect X-ray repetition rates up to 33 kHz (possibility to exceed)
- Atto/atto capabilities

Dynamic REAction Microscope (DREAM)

CommissioningES
DREAMPRP DREAM• Assembly almost complete• Plan for laser-only commissioning during remainder of Run 23.• Bulk of X-ray commissioning during Run 24• Early Science experiments at end of Run 24:• Following Early Science, we will move into PRP experiments

TMO Instrument Team @ LCLS

SLAC

ChemRIXS in Run 25

LCLS Run 25 Users Town Hall

February 6th 2025 Kristjan Kunnus and the ChemRIXS Team

ChemRIXS Run 25 call

Liquid standard configuration

Liquid samples, sheet or round jets.

- Time-resolved XAS with monochromatic beam (scanning)
 - Transmission experiments (sheet jets)
 - Total Fluorescence Yield (TFY) mode
 - Partial Fluorescence Yield (PFY) mode
- Time-resolved RIXS/XES

Upgrades

We are planning to commission during Run 24:

- High throughput RIXS spectrometer.
- Improved transmission XAS capabilities (new detectors, dual-beam).

Non-standard configurations

- Please contact beamline scientist for:
 - Zero-order operation at high rep-rate (e.g. attosecond XLEAP experiments).
 - Solid samples or special sample delivery requirements.

Spectrometer upgrade:

ChemRIXS Run 25 key parameters

X-ray

Repetition rate (Hz)	Up to 33 kHz
Energy Range (eV)	250 - 1600 eV
Pulse Duration (fs)	20 fs (nominal, SASE)
Energy per pulse at the IP (monochromatic)	>100 nJ (250 - 1000 eV >10 nJ (1000 - 1300 eV >1 nJ (1300 - 1600 eV)
Beamline Resolving Power	>2000
Spot Size, FWHM (range)	10 - 1000 (um) diameter
Polarization	Linear, Horizontal

Laser

Repetition rate (Hz)	Synchronized up to 33 kHz					
Wavelength (fs)	800	400	266	480 - 600	600 - 900	
Pulse Duration (fs)	20	30	35	<50	<50	
Energy per pulse (µJ) (on target)	500	50	5	>15	>5	
Spot Size, FWHM (800 nm)	50 to 100 μm					
Polarization	Variable: linear, circular					
Angle	~0.5 deg angle with x-ray beam					
Arrival Time Monitor	< 20 fs accuracy in x-ray/laser arrival time tagging should be available. Overall temporal resolution will be dependent on machine and instrument configuration.					

Please contact us for any questions K. Kunnus <u>kristjan@slac.stanford.edu</u>

https://lcls.slac.stanford.edu/instruments/neh-2-2/neh-2-2-Capabilities 44

qRIXS in Run 25

LCLS Run 25 Users Town Hall

February 6 2025 Georgi Dakovski and the qRIXS Team

qRIXS Instrument: Notional timeline

- qRIXS is installed; vacuum, motion and detectors are functioning
- Commissioning in Run 23 is underway
- Early Science phase will be scheduled for the beginning of Run 24, based on commissioning progress
 - For Users community engagement, please contact Apurva Mehta, <u>mehta@slac.stanford.edu</u> (Materials Science Department Head)
- The remainder of Run 24 and Run 25 will be for PRP experiments

qRIXS commissioning is underway

Hard X-ray Instruments in Run 25

LCLS Run 25 Town Hall

February 6 2025 Sebastien Boutet for all LCLS Hard X-ray Instrument Team Members

New Capability: DCCM in The FEE Will Be Available

- The Double channel-cut crystal monochromator (DCCM) is currently installed in the Front End Enclosure (FEE).
- Will be commissioned in Run 23 & 24
- Will be available to users for run 25.
- Can send monochromatic beam to the far hall.
 - \circ Δ E/E of 1E-4
- Can be used to calibrate XRT spectrometer.
- Can be used for XAS experiments.

SLAC

XPP (Not Available in Run 25)

LCLS-II-HE Upgrade

- The XPP Instrument is not available for beamtime in Run 25
- It will be undergoing a rebuild for LCLS-II-HE
- Much of the capabilities of XPP are available at other Hard X-ray Instruments
- Please contact LCLS scientists to discuss how to best support your needs at other instruments

Time-resolved coherent diffraction and small angle coherent scattering offered as Standard Config. Split-delay + 2 bunch mode for XPCS. Low temperature environment (20K) for quantum materials.

Solution phase chemistry with WAXS, XES, XAS: Mature standard configuration, broad UV-Vis-near-IR pump wavelength coverage. Enhanced suite of multi-crystal spectrometers.

Instrument Lead: Matthieu Chollet

Jungfrau 15M

- Key Capabilities: Femtosecond Crystallography and time-resolved forward scattering (WAXS/SAXS).
- Femtosecond Pump Laser: Collinear incoupling geometry with wavelength coverage from UV to near IR.
- Jungfrau 15M: Fast large area detector to be commissioned in Run 24
- eXchangeable Liquid Jet Endstation: Helium environment horizontal and vertical jet sample delivery compatible with emission spectroscopy and forward scattering. Dedicated mutli crystal spectrometer. Compatible with collinear optical pump.
- Droplet on Demand: Semi-automated droplet delivery system with low sample consumption

Instrument Lead: Leland Gee

Serial Femtosecond Crystallography: variety of sample injection options from jets (GDVN, high-viscosity, MESH, mixing) to fixed target. High photon energy (18 keV) available for 0.8 Å resolution.

Gas Phase Photochemistry: In vacuum gas cell, short-pulse UV pump (<50fs), multisample gas exchange manifold.

Nanofocus for high field physics and nonlinear x-ray science: 100nm KB system allows reaching power density of 10²⁰ W/cm^{2.} Improved nanofocus monitoring with wavefront sensor.

MEC

Long Pulse Laser

- Delivery of up to 100J in 10 ns on target
- Peak power of 10 GW for any temporal configuration
- Pulse shaping (e.g. flat top, ramp)
- CPP: 150, 300 and 600 µm

Short Pulse Laser

- Delivery of up to 1J in 45 fs at 800 nm, or 0.54J at 400 nm
- high intensity platform: peak intensity > 10¹⁹ W/cm²
- at 800 nm, 45° angle of incidence allowed between high intensity mode and FEL
- low intensity platform: peak intensity << 10¹⁶ W/cm²

Multiple submission avenues

- Regular PRP proposal
 - up to 50% towards Inertial Fusion Energy
 - about 50% standard configuration
- Data Set Collection
 - 1-2 shifts
 - no requirement for previous X-rays beamtimes
 - reviewed by PRP
- Rapid Access
 - VISAR only shots
 - can be submitted at any time during the year
 - reviewed by the MEC team

Std configurations

- 1. X-Ray Diffraction configuration with long pulse laser in collinear geometry (vs the FEL)
- 2. X-Ray Imaging geometry with Long Pulse Laser perpendicular to the FEL, X-Ray Diffraction with 1x ePix10k

TXI

Instrument Lead: Andy Aquila

Data Systems

February 6th 2025

Reminder: LCLS-I and LCLS-II Use Different Data Systems

LCLS-I and LCLS-II have different DAQ, psana analysis framework, and AMI

LCLS-I is used for hard x-ray instruments XCS, CXI, and MEC - limited to 120 Hz and ~10 GB/s

LCLS-I psana analysis framework (psana) documentation: <u>https://confluence.slac.stanford.edu/display/PSDM/LCLS+Data+Analysis</u>

LCLS-II is used for the new instruments in TMO, RIX, XPP, MFX - up to 1 MHz and ~TB/s

LCLS-II psana analysis framework (psana2), documentation:

https://confluence.slac.stanford.edu/display/LCLSIIData/LCLS-II+Data+Acquisition+and+Analysis.

AMI2 available in TMO, RIX, XPP, and MFX: <u>https://confluence.slac.stanford.edu/display/LCLSIIData/ami</u> SLAC Run 25 Town Hall - LCLS Data Systems

What's new?

- MFX is moving to LCLS-II DAQ/analysis
- LCLS-I will begin supporting AMI2 to allow users to acclimate to the new online monitoring system, designed to handle the high rate demands of LCLS-II. Users can start to use AMI2 in MFX.
- TMO and RIX data reduction: High Speed Digitizers are emitting both reduced (Feature Extracted, or FEX, data) and non-reduced (non-FEX) data.
 - Data Reduction in TMO/RIX digitizers is zero suppression; it is recommended that users analyze both FEX and non-FEX data in parallel to verify that they agree to within statistical errors
 - Please contact <u>pcds-ana-l@slac.stanford.edu</u> or your POC with questions.
- Data center (S3DF) outages announcements: <u>https://confluence.slac.stanford.edu/display/PCDS/Outages</u>

How is S3DF Different From psana?

Changes to expect when migrating from psana to S3DF

- All users/experiments, including old experiments, will use S3DF as a replacement for psana
- By October 2024, legacy systems will be retired.
- Changes from psana to S3DF:
 - Home directory (backed up) is now be in weka (/sdf/home/<first letter of username>/<username>)
 - Shared software packages and tools are in /sdf/group/lcls/ds
 - /sdf/group/lcls/ds/anapsana1/psana2 releases, detector calibration, etc.
 - /sdf/group/lcls/ds/tools smalldata-tools, cctbx, crystfel, om, ...
 - /sdf/group/lcls/ds/dm data-management releases and tools
 - LCLS experimental data is accessible on the interactive and batch nodes (but not the login nodes)
 - Offline storage: /sdf/data/lcls/ds/<instr>/<expt>/<expt-folders>
 - FFB storage /sdf/data/lcls/drpsrcf/ffb/<instr>/<expt>/<expt-folders>
 - S3DF batch compute uses Slurm batch processing and requires a Slurm account to submit a job in order to track resource usage per experiment. The slurm account is lcls:<experiment-name>
 - Contact your POC if you require a reservation with a certain number of nodes.
 - We are investigating on-shift/off-shift priority mechanisms; keep an eye on confluence as our policies and recommendations may be in flux as we learn which techniques provide users with the best performance.

Try out Automated Run Processing (ARP)

Automated Run Processing (ARP) capabilities are available via $eLog \rightarrow Workflow \rightarrow Definitions$

- The Automatic Run Processor (ARP) is a web service that allows for automatic workflows and for the easier submission of batch jobs via a web interface: see eLog → Workflow → Definitions
- A script that submits the batch job is all that is needed for this system to work.
- ARP will automatically launch the configured workflow and return status and results to eLog.
- Examples and documentation: <u>https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=219269619</u>
- Working on some standardized workflows for complex analysis tasks.
- For more information on using this resource, reach out to Silke Nelson (<u>snelson@slac.stanford.edu</u>)

Info eLog Samp	les Run Tables File Manager Shifts Feedback	Workflow - Summaries Col	laborators	Switch	럳 🗋 jana 🕞 希 Hom	e 🕓 📞 Zo	om 💡
		Definitions Lo	gbook for xcslx2619				÷
Name	Executable	Control	Parameters	Location	Trigger	As user	
DataQualityPlots	/cds/data/drpsrcf/xcs/xcslx2619/scratch/smalldata_tools/arp_scripts/submit_plots.sh		postStatsqueue ffbl2qdirectory /cds/data/drpsrcf/xcs/xcslx2619/scratch/hdf5/smalldata	SRCF_FFB	RUN_PARAM_IS_VALUE SmallData_ffb == done	snelson	ĭ Î
PedestalPlots	/reg/g/psdm/sw/tools/smalldata_tools/pedplot/arp_scripts/submit_plots.sh		queue psfehprioqpedestals	SLAC	RUN_PARAM_IS_VALUE pedestal == done	snelson	ı∎ Î
cube	/cds/data/drpsrcf/xcs/xcslx2619/scratch/smalldata_tools/arp_scripts/cubeRun.sh		cores 60postRuntablequeue ffbh2q	SRCF_FFB	MANUAL	yanwen	ı∎ Î
smd	/cds/data/drpsrcf/xcs/xcslx2619/scratch/smalldata_1	tools/arp_scripts/submit_smd.sh	queue ffbh2qnorecorderpostRuntablecores 60waitepicsAll	SRCF_FFB	START_OF_RUN	yanwen	ľ Î

S3DF Quick Reference

S3DF Quick Reference: <u>https://s3df.slac.stanford.edu/public/doc/#/</u>

SSH	s3dflogin.slac.stanford.edu
NoMachine	s3dfnx.slac.stanford.edu
OnDemand	https://s3df.slac.stanford.edu/ondemand
Globus Endpoint	slac#s3df
Help (slack channel)	slac.slack.com#comp-sdf
Help (email)	s3df-help@slac.stanford.edu
Banking & Accounting	https://s3df.slac.stanford.edu/coact
S3DF Dashboard & Monitoring	https://s3df.slac.stanford.edu/monitoring

Questions?

Agenda

Time (PST)	Торіс	Presenter		
Plenary Session - <u>Join via Zoom >></u>				
9:00 am	Current LCLS Status & Plans	Mike Dunne Director, LCLS		
9:15 am	Universal Proposal System	Leilani Conradson / Paul Jones LCLS User Office		
9:23 am	User Executive Committee Update	Silvia Pandolfi LCLS UEC Vice Chair		
9:26 am	Short Proposal Program Update	Sandra Mous LCLS Scientist		
9:31 am	Accelerator Plans for Run 25	Axel Brachmann / Tim Maxwell Accelerator Dept. Head		
9:40 am	Soft X-ray Instrument Capabilities (Introduce breakouts)	James Cryan / Kristjan Kunnus /Georgi Dakovski TMO/chemRIXS/qRIXS Instrument Leads		
9:50 am	Hard X-ray Instrument Capabilities (Introduce Breakouts)	Sebastien Boutet Director of Operations		
9:55 am	Data systems	Jana Thayer Data Systems Dept. Head		
Breakout Sessions/Office Hours by Instrum	nent			
10:10 am - 11:00am	Session 1			
	•TMO <u>Join via Zoom >></u>	James Cryan		
	•MEC Join via Zoom >>	Eric Galtier		
	•MFX <u>Join via Zoom >></u>	Sebastian Dehe for Leland Gee		
	•qRIXS <u>Join via Zoom >></u>	Georgi Dakovski		
	•XCS/XPP Join via Zoom >>	Matthieu Chollet & Takahiro Sato		
	•chemRIXS <u>Join via Zoom >></u>	Kristjan Kunnus		
	•CXI <u>Join via Zoom >></u>	Meng Liang		