MEC Instrument capabilities for run 23

LCLS Virtual Town Hall

MEC team January 30th, 2024

Stanford University

Proposal guidelines

Engaging MEC staff early in the proposal phase can help strengthen the technical feasibility

Steps to investigate technical feasibility of your proposal:

- 1. Start investigating about general hutch capabilities here
 - A more detailed set of specifications for each components is under development here
- 2. Then, engage conversation with any Scientific Staff from this list:
 - **Eric Galtier** Scientist (Instrument Lead), egaltier@slac.stanford.edu
 - **Dimitri Khaghani** Scientist (Instrument), khaghani@slac.stanford.edu
 - Hae Ja Lee Scientist (Instrument), haelee@slac.stanford.edu
 - **Bob Nagler** Scientist (Instrument), bnagler@slac.stanford.edu
 - Philip Heimann Scientist (Instrument, X-ray Beam Delivery), paheim@slac.stanford.edu
 - Eric Cunningham Scientist (Lasers), efcunn@slac.stanford.edu
 - Nick Czapla Scientist (Lasers), nczapla@slac.stanford.edu
 - **Gilliss Dyer** Scientist (MEC Dept Head), gilliss@slac.stanford.edu
- 3. Iterate with the staff above to maximize the use of the hutch experimental supporting infrastructure

Proposal submission avenues

PRP (with X-rays)

- Regular submission route for experiments
- up to 5 shifts
- Includes up to 50% of standard configurations
- Standard configurations
 - LPL collinear
 - $\circ \quad LPL\, perp$
 - LPL X-ray imaging
- proposal template is <u>here</u>

• <u>new!</u>

• Includes up to 50% towards IFE

Data Set (with X-rays)

- new!
- To get a more complete set of data from previous LCLS experiments
- Using X-rays and optical lasers in standard configurations only
- Typically 1-2 shifts
- Reviewed within the PRP
- submission form is <u>here</u>

Rapid Access (VISAR only)

- new!
- To obtain any new or improve old VISAR data
- No requirement for having done a previous LCLS experiment before
- Using LPL in standard configuration only
- Typically up to 30 targets (max one day of shots)
- Can be submitted at any point during the run
- Reviewed by MEC staff only
- Look at the published schedule to anticipate when to submit
- submission form is <u>here</u>

Run 23 standard configurations

Standard configuration 1 full mode

- Long Pulse Laser collinear beam delivery
- up to 100 J in 10ns, 10 GW maximum
- Target surface perpendicular to FEL
- Detection is (4 x ePix10k) + VISAR + (optional: XRTS upstream TCC)
- backward XRTS is optional and installed when needed only

Standard configuration 2

- Long Pulse Laser perpendicular beam delivery
- up to 100 J in 10ns, 10 GW maximum
- Target holder at 45° from the FEL (but target surface hit by the optical lasers is colinear to the FEL)
- Detection is (3 x ePix10k) + VISAR + (MXI downstream TCC)

MEC source parameters for run 23 (see <u>here</u> for a full list)

LCLS Hard X-ray (FEL)

Short Pulse Laser (SPL)

Long Pulse Laser (LPL)

Parameter	Value	Parameter	Value	Parameter	Value
Photon energy range	4 – 25 keV	Wavelength	800 nm fundamental (frequency doubling to 400 nm	Wavelength	527 nm (frequency doubled from the fundamental of 1053 nm)
Pulse energy ^a	0.6 – 2 mJ (25 and 4 keV respectively)	Pulse energy	available) 1 J compressed at TCC at 800 nm (> 400 mJ at 400 nm);	Pulse energy	4-arms: 100 J in 10 ns (flat top shape) ⇒ 10 GW peak power max
Rep. Rate	up to 120 Hz, single shot with		1.5 J uncompressed at TCC	Pulse duration	5-35 ns
Beamline	pulse picker 10% at 4 keV;	Pulse duration	<50 fs compressed; 160 ps uncompressed	Rep. Rate	one shot / 7 min with 4 arms; one shot / 3 min with 2 arms
transmission	40% at 8 keV	Rep. Rate	120 Hz for 10 mJ pulse energy; 5 Hz otherwise	Spot size ^f	150, 300, 600 μ m (spatially flat top using Continuous Phase Plates (CPP))
Minimum spot	~ $1-2 \mu m$ with hutch optics; <200 nm with in-chamber optics				
size		Spot size ^d	with OAP (f/6): ~6 μ m; with spherical mirror: > 50 μ m		
Polarization	Vertical			Temporal pulse shapes	flat top, step pulse, arbitrary (efficient and accurate pulse shaping capability)
Bandwidth modes ^b	SASE, seeded ^c	Pulse contrast (at 800 nm) ^e	>10 ⁸ @ 3 ps; > 10 ¹⁰ (noise floor) @ 30 ps		
Multipulse modes ^b	single pulse, 2 pulses, 4 pulses	Synchronization	± 100 fs RMS with LCLS	Synchronization	± 10 ps RMS with LCLS

^a Pulse energies are displayed at the end of the FEE. They do not take into account the beamline transmission.

^b Contact beamline scientist to discuss the details of the operation modes. See previous slide for contact list. 4 pulses are offered at risk.

^c Contact beamline scientists to discuss use of the K-mono to suppress bandwidth wings in the seeded mode.

^d See next slides for more details on spot size characteristics. ^e E. Cunningham, et al. Appl. Phys. Lett. 114, 221106 (2019). ^fSee next slides for more details on spot size characteristics.

LPL recent work and spot size performances

- 100 J, 10 ns, CPP: 150 μm
- Intensity at plateau: 3.5 e 13 W/cm²
- 50% contained in ø 138 µm
- 80% contained in ø 181 μm
- 90% contained in ø 224 μm

- 100 J, 10 ns, CPP: 300 µm
- Intensity at plateau: 1.1 e 13 W/cm²
- 50% contained in ø 240 µm
- 80% contained in ø 315 μm
- 90% contained in ø 347 μm

- 100 J, 10 ns, CPP: 600 μm
- Intensity at plateau: 3.4 e 12 W/cm²
- 50% contained in ø 438 µm
- 80% contained in ø 556 μm
- 90% contained in ø 600 μm

SPL recent work and laser intensity peak performances

Average peak intensity in excess of $3e19 \text{ W/cm}^2$ at 5 Hz.

- New compressor design and suite of alignment diagnostics:
 - improves alignment consistency and accuracy to TCC
- New timetool beampath:
 - works independently of the main amplified beam
 - in principle, works at 120 Hz
 - improves consistency in configuration changes

SPL beam delivery

SPL for high peak intensity^{*} (>1e19 W/cm²)

- delivers max peak intensity at TCC at 800 or 400 nm
- angle between SPL focus beam vs FEL: 22.5, 45, 59°
- uses f/6 metallic OAP
- compatible with MXI (up or downstream), XRTS, XTCS, XRD detectors

SPL for low peak intensity (<1e16 W/cm²)

- delivers compressed low energy pulse at 400 nm, uncompressed low and high energy pulses at 800 nm
- angle between SPL focus beam vs FEL is fixed at 15°
- uses HR spherical mirror of 900 mm focal length
- compatible with MXI (up or downstream), XRTS, XTCS, XRD detectors

configurations.

X-ray spectroscopy

Compact XRTS

- designed for high throughput X-ray Thomson scattering measurements in low peak intensity matter interaction
- compatible with LPL and SPL beam delivery
- von Hamos geometry
- HAPG crystal allowing central photon energy ranging from 7.5 to 25 keV, with a ~1.15 keV spectral window

Cold Ni Compton feature (R123) at 8.21 keV

X-ray Transmission Crystal Spectrometer (XTCS)

- designed for spectroscopy in max peak intensity matter interaction (e.g. >1e19 W/cm²)
- compatible with new SPL beam delivery
- Cauchois geometry
- Quartz crystal allowing central photon energy ranging from 6 to 20 keV, with a ~2 keV spectral window at resolving power >1000

