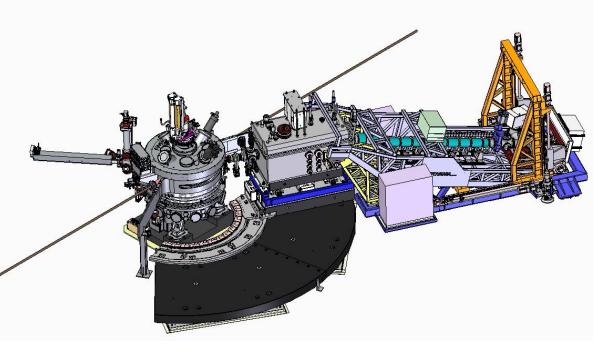
qRIXS Breakout Session

LCLS Run 23 Users Town Hall January 30th 2024

qRIXS Instrument: Notional timeline

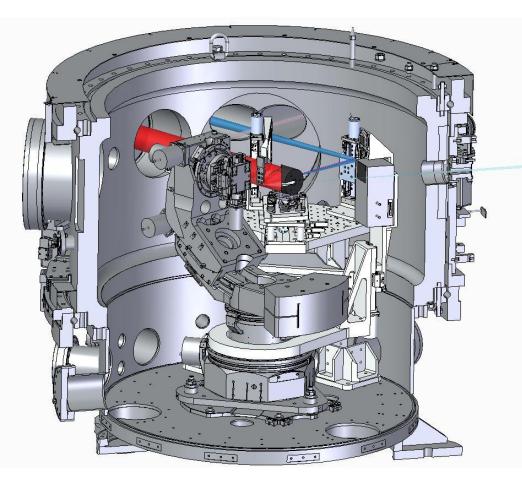
Users involvement in Early Science, 2-page summary:

- What is the science case?
- Why is LCLS needed?
- Crucial performance parameters:
 - X-ray energy, scanning
 - Optical wavelength, timing
 - Detectors, diagnostics, sample, etc.
- · How many shifts are needed? Signal levels?
- Who needs to participate and what can they contribute?
- Is there theoretical support, what would make the experiment a "success"?


2

qRIXS Instrument: Sample Chamber + Spectrometer Arm

X-ray Parameters		Laser Parameters	
Repetition rate (kHz)	33	Repetition rate (kHz)	33
Energy Range (eV)	250 - 1100	Wavelength (nm)	1030 and up to 4 th harmonic
Spot Size (um), H x V	10 x 10, min 1000 max	Pulse Duration (fs)	<50 @ 800 nm
Energy per pulse (nJ)	>10	Energy per pulse (µJ)	300
Pulse Duration (fs)	<200	Spot size (µm)	50 min
Beamline Resolving Power	>20,000	Polarization control	Horizontal and vertical, circular
Combined Spectrometer resolving power	10,000 @ 931 eV	Arrival time monitor precision (fs)	<20
Polarization	Linear horiz.		


For more details:

https://lcls.slac.stanford.edu/instruments/neh-2-2/neh-2-2-Capabilities

qRIXS Instrument: Sample Chamber capabilities

Techniques: XRD, REXS, XRR, XAS



- In-vacuum diffractometer, 6 degrees of freedom
- •Bulk samples and thin films on substrates
- Load-lock chamber
- •Sample cooling, ~ 25 K
- •Diagnostic paddle for calibration targets, spatio-temporal overlap, etc.
- •Laser in- and out- coupling
- Avalanche photodiode detectors for x-ray absorption and diffraction

4

- Arrival time monitor
- •Lasers: 1030 nm
- •Overall temporal resolution: ~60 fs

qRIXS installed

