TMO in Run 23

LCLS Run 23 Users Town Hall

January 30th 2024 James Cryan TMO Instrument Lead AMOS Department Head

Science Areas

Science areas we are well positioned to address in TMO in Run 22

- Ultrafast Gas Phase Photochemistry
 - X-ray spectroscopy (XAS, XPS) of small molecular systems
- Attosecond Electron Dynamics
 - Fundamental charge and energy dynamics
 - Electronic Coherence
- Strong-field laser/matter interactions
 - Probed by X-ray spectroscopy

TMO Instrument Team

J. Cryan	TMO Inst	rument Lead		J. James J-C	Castagna	TMO Engineering Team	
PObat A	Summers T.	Wolf		J. Aldrich R. S	inedden	TMO Area Manager and Support Team	
M.F. Lin	T. Driver	TMO Ins	trument Scientists		Aliamal	TMO Controls Team	
J. Glownia	THE-ME DET	TMO La	aser Scientists	E. Isele J. Wa	ng K. Borne	Graduate Students	
	TMO R	esearch Associates					-

TMO Beamline for Run 23

- For Run 23, TMO will offer two endstations: MBES and MRCO at IP1
- Commissioning of IP2 will continue in Run 23.
- DREAM should be available for User science in Run 24

Magnetic Bottle Electron Time-of-Flight Spectrometer (MBES)

- 2m flight tube with retardation section,
 >50% collection efficiency
 - Retardation up to 400 eV
- Gas targets:
 - Either heated gas needle or
 - In-vacuum oven
- Ion extraction plate and coincident Ion ToF capability

Angle-resolving Time-of-Flight Spectrometer (MRCO)

- Array of ToF spectrometers:
 - 8 guaranteed, 16 planned
 - 1% Total collection efficiency
- Retardation upto 2000 V
- Heated needle for sample delivery

Dynamic REAction Microscope (DREAM)

Status

- Planned Laser-based commissioning
 - Assembly is ongoing:
 - We hope to finish in mid-February
 - Then we will start commissioning with the OPCPA laser system.
- Time allocated in Run 22 and 23 for X-ray commissioning
- Early Science:
 - We will plan for Early Science in Run 23.
 - We have several proposals from the community.
 - We plan to have a workshop once construction is complete.

Attosecond Pulses @ TMO

- Recommissioning Attosecond pulses in Run 22.
- Expect two-color (atto/atto) for Run 23 (baseline > 1 kHz rep. rate)

Expected Beam Parameters (Laser and X-ray)

	arameters			X-ray Parameters					
Repetition rate (Hz)	Synchronized up to 33 kHz				Repetition rate (Hz)	Up to 100 kHz			
Wavelength	800 nm < 25 fs	400 nm < 30 fs	266* nm ~ 30 fs	1200-2300* nm < 100 fs	Energy Range (eV)	250 - 1800	50 - 1800		
					Pulse Duration	20 fs (nominal)	Under Development (increased risk)		
Pulse Duration							Tunable to 5 fs	< 1 fs (XLEAP-II)	
Energy per pulse (on target)	< 600 μJ	< 100 μJ	~ 10 µJ	< 130 µJ (signal) > 10 µJ (idler)	Energy per pulse	~ 50 µJ	Scales linear with pulse energy	~10 µJ	
*commission in run 22	·	·							
Spot Size, FWHM (800 nm)	50 to 100 um				Bandwidth (FWHM)	0.5%	0.5%	>1%	
Polarization Variable: linear, circular				Repetition Rate	> 30 kHz	> 30 kHz	>1 kHz		
Angle	~0.5 deg angle with x-ray beam			Spot Size, FWHM (range)	1.0 - 200 (um) diameter				
Arrival Time Monitor	< 20 fs a tagging.	accuracy in	n x-ray/lase	r arrival time	Polarization	Linear, Ho	ear, Horizontal		
SLAC					Two Pulse Modes	< 10 μ J / pulse with tunable delay via split undulator method. This provides a minimum delay of ~10 fs for arbitrary wavelength. For harmonic operation ($\omega/2\omega$, $\omega/3\omega$) the minimum delay ~300 as.			

Single-Shot Photon Spectrometer

- Off-axis Fresnel Zone Plate design
 - array of zone plates for different photon energies
- Coupled to 200 kHz line-camera to measure single-shot
- Image intensifier for low energy operation
- Able to resolve SASE sub-structure

TMO Laser System

800 nm beam delivered to TMO from the laser hall.

Modular units tailor, compress, and perform wavelength conversion on the beam.

Harmonics module to make <30 fs 800 and 400 nm at IP. 266 nm planned to be tested in-house early in run 22.

High repetition rate TOPAS PRIME HE will be available for streaking experiments (1200-2300 nm)

LCLS-II Timing

Arrival Time Monitor

Single shot arrival time monitor at full rate will be available.

Measurements at LCLS I rates have worked well down to few microjoule X-ray pulse energies.

IR

R&D is ongoing to push the sensitivity to enable lower pulse energies.

Proof of principle interaction point t_0 measurements part of commissioning and early science.

Thank You

Questions?