ChemRIXS Breakout Session

LCLS Run 23 Users Town Hall
January 30th 2024
ChemRIXS Run 23 call

Liquid standard configuration:
Liquid samples, sheet jets.
- Time-resolved XAS with monochromatic beam (scanning)
 - Transmission experiments (sheet jets)
 - Total Fluorescence Yield (TFY) mode
 - Partial Fluorescence Yield (PFY) mode
- Time-resolved RIXS/XES

- Please contact beamline scientist for non-standard configurations.
 - Zero-order operation at high rep-rate (e.g. attosecond XLEAP experiments),
 note: no in-line spectrometer available in run 23
 - Solid samples
ChemRIXS liquid standard configuration

SCRF operation
- Repetition rate up to 33 kHz
- Pulse energy up to 100 uJ

RIX beamline
- I_0 at the IP >10^{14} photons/s
- Photon energy range 250 – 1000 eV and up to 1600 eV
- Mono resolving power 2000
- Spot size 10 – 1000 um (variable)
- I_0 detector 5% shot-by-shot noise

OPCPA laser system
- Repetition rate 33 kHz
- 800, 400 and 266 nm
- Vis-OPA 480 – 900 nm

Transmission XAS
- Direct detection with downstream X-ray CCD
- 2048x512 Andor CCD read-out 1 Hz (Image), 120 Hz (FVB)

TFY-XAS
- APDs mounted close to the jet
- Shot-by-shot readout

RIXS/XES/PFY-XAS
- VLS spectrometer mounted at 45 deg backscattering
- 2048x512 Andor CCD read-out 1 Hz (Image), 120 Hz (FVB)
- Resolving power ~2000
- Detection efficiency $4 \cdot 10^{-8}$ (FVB), $1.6 \cdot 10^{-7}$ (Image)
Sample delivery

Liquid sheet jets for Transmission XAS
- Thin gas accelerated sheets (Nat. Commun. 9, 1353)
 - Thickness 0.1 - 1 µm
 - Flow rates 250 µl/min
 - Optimal for bulk liquids measurements
- Converging nozzles (Phys. Rev. Fluids 3, 114202)
 - Thickness 0.2 - 2 µm
 - Flow rates 2 - 4 ml/min
 - Optimal for solutes

Cylindrical jets for FY-XAS and XES
- Gas Dynamic Virtual Nozzle (GDVN)
 - Diameter 1 - 10 µm
 - Flow rates ~20 µl/min
- Rayleigh jet
 - Diameter >20 µm
 - Flow rates ~1 ml/min

Sample recirculation
- Min. sample volume requirement 50-100 ml

Load-lock systems
- Enables fast nozzle exchange
Performance expectations

Transmission-XAS

- N K-edge
 - Pyridine, 2 M
 - 120 Hz
 - Noise ~1% (10 mOD) at 120 Hz -> <0.1% (1 mOD) at 33 kHz

TFY-XAS

- Fe L3-edge
 - K3[Fe(CN)6] 100 mM
 - 120 Hz
 - x10 SNR improvement at 33 kHz

RIXS

- 33 kHz
 - $I_0 = 10^{14}$ photons/s
 - VLS throughput = 10^{-7}
 - Fl. Yield = 0.005

<table>
<thead>
<tr>
<th>Concentration (mM)</th>
<th>$\mu_{\text{solute}}/\mu_{\text{total}}$</th>
<th>Total count rate (1/s)</th>
<th>Tr-RIXS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1/2</td>
<td>10^4</td>
<td>Yes</td>
</tr>
<tr>
<td>100</td>
<td>1/20</td>
<td>10^3</td>
<td>Possible</td>
</tr>
<tr>
<td>10</td>
<td>1/200</td>
<td>10^2</td>
<td>Hard</td>
</tr>
</tbody>
</table>
ChemRIXS Run 23 key parameters

X-ray

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition rate (Hz)</td>
<td>Up to 33 kHz</td>
</tr>
<tr>
<td>Energy Range (eV)</td>
<td>250 - 1600 eV</td>
</tr>
<tr>
<td>Pulse Duration (fs)</td>
<td>20 fs (nominal, 5ASE)</td>
</tr>
<tr>
<td>Energy per pulse at the IP (monochromatic)</td>
<td>>100 nJ (250 - 1000 eV)</td>
</tr>
<tr>
<td></td>
<td>>10 nJ (1000 - 1300 eV)</td>
</tr>
<tr>
<td></td>
<td>>1 nJ (1300 - 1600 eV)</td>
</tr>
<tr>
<td>Beamline Resolving Power</td>
<td>>2000</td>
</tr>
<tr>
<td>Spot Size, FWHM (range)</td>
<td>10 - 1000 (um) diameter</td>
</tr>
<tr>
<td>Polarization</td>
<td>Linear, Horizontal</td>
</tr>
</tbody>
</table>

Laser

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition rate (Hz)</td>
<td>Synchronized up to 33 kHz</td>
</tr>
<tr>
<td>Wavelength (fs)</td>
<td>800 400 266 480-600 600-900</td>
</tr>
<tr>
<td>Pulse Duration (fs)</td>
<td>20 30 35 <50 <50</td>
</tr>
<tr>
<td>Energy per pulse (µJ) (on target)</td>
<td>500 50 5 >15 >5</td>
</tr>
<tr>
<td>Spot Size, FWHM (800 nm)</td>
<td>50 to 100 µm</td>
</tr>
<tr>
<td>Polarization</td>
<td>Variable: linear, circular</td>
</tr>
<tr>
<td>Angle</td>
<td>~0.5 deg angle with x-ray beam</td>
</tr>
<tr>
<td>Arrival Time Monitor</td>
<td>< 20 fs accuracy in x-ray/laser arrival time tagging should be available. Overall temporal resolution will be dependent on machine and instrument configuration.</td>
</tr>
</tbody>
</table>

Please contact us for any questions.

G. Dakovski
dakovski@slac.stanford.edu
K. Kunnus
kristjan@slac.stanford.edu