Gas Phase Photochemistry Run 21

Thomas Wolf, Mengning Liang LCLS Chemical Sciences Department Head 02/14/2022

Gas Phase Photochemistry in the SRD Department Structure

Techniques and Instruments Supported by the Group

Collaborate with Us

We are always open to and interested in collaborations!

Available fellowships from DOE and NIH:

- DOE Office of Science Graduate Student Research (SCGSR) Program: <u>https://science.osti.gov/wdts/scgsr</u> Applications due 05/04/2022
- NIH:
 - NIH F31 graduate student fellowships: <u>https://www.ninds.nih.gov/Funding/Training-Career-Development/Award/F31-Individual-NRSA-PhD</u> <u>-Students-MDPhD-Students-MSTP-0</u> Deadlines: 04/08, 08/08, 12/08

SLAO

• NIH F32 Postdoctoral fellowships:

https://www.niehs.nih.gov/research/supported/training/fellowships/f32/index.cfm

-SLAC

Run 22 IP1 will be split between MBES/MRCO. For Run 22 we will solicit proposals for both end stations.

X-ray and Laser Parameters for TMO inRun 21

X-ray Parameters				Laser Parameters				
Repetition rate (Hz)	Up to 50 kHz				Repetition rate (Hz)	Synchronized up to 33 kHz		
Energy Range (eV)	250 - 1800				Wavelength	800 400 r	High m Risk	ES Only
Pulse Duration	Under Development (increased risk) 20 fs					nm	266 nm	1300-240 nm
	(nominal)	Tunable to 5 fs	< 1 fs (XLEAP-II)		Pulse Duration	< 25 fs < 50	s < 50 fs	< 100 fs
Energy per pulse	~ 50 µJ	Scales linear with pulse energy	2-3 μJ		Energy per pulse (on target)	100 µJ > 10	ιJ ~1μJ	< 10 µJ
Bandwidth (FWHM)	2 eV	2 eV	4-8 eV		Spot Size, FWHM (800 nm)	50 to 100 um		
Spot Size, FWHM (range)	1.0 - 200 (um) diameter				Polarization	Variable: linear, circular		
Polarization	Linear. Horizontal				Angle	~0.5 deg angle with x-ray beam		
Two Pulse Mode (jcryan@stanford.edu for more information)	Under development, offered at risk < 10 μ J / pulse with tunable delay via split undulator method. This provides a minimum delay of ~10 fs for arbitrary wavelength. For harmonic operation ($\omega/2\omega$, $\omega/3\omega$) the minimum delay ~200 as				Arrival Time Monitor	< 20 fs accuracy in x-ray/laser arrival tim tagging.		

User Involvement in Early Science

- Early Science is lead by LCLS scientists
- Interested groups should contact James (jcryan@slac.stanford.edu) and Thomas (thomas.wolf@slac.stanford.edu)
- Department heads collect experiment ideas and prioritize together with the instrument advisory panels.
- Department heads communicate consolidated early science plan with user community and broadly advertise participation.
- Department heads update interested user groups on adjustments to the early science plan.

-SLAC

CXI - Coherent X-ray Imaging | Linac Coherent Light Source (stanford.edu)

Primary considerations:

- Low background scatter Vacuum environment at hard X-ray energies with numerous slits for a clean focal spot
- Short Pulse UV capabilities

Standard configuration for gas phase

chemistry:

CXI Standard Configuration | Linac Coherent Light Source (stanford.edu)

- Photon energy
 - 7keV-11keV (1 μm focal spot) –
 KB mirrors (reflective optics)
 - 11keV-25keV (2-3μm 50μm focal spot) CRLs

Standard Configuration

- Gas cell
- Be exit window downstream
- Pt pinhole entrance
- Additional Pt pinhole upstream
- Scattering cone
- UV pump propagates in-line with the X-rays
- Fully controllable sample delivery manifold

Standard Configuration

gas manifold - accommodates 4 samples

gas cell, entrance pinhole and frosted YAG for spatial overlap

Gas cell, pinhole, scattering cone

Standard Configuration

- Detector 4M Jungfrau detector
 Jungfrau | Linac Coherent Light Source (stanford.edu)
 - \circ Adaptive gain
 - background is <1 photon / image with proper alignment
- in-line X-ray spectrometer available as needed
- Downstream I0 monitor

New for Run 21

- Prefocusing lenses in the XRT to increase flux when using the CRLs by avoiding losses due to the clear aperture of the CXI CRLs
- Downstream monitor of the UV pump power (after sample), likely in SSC (downstream chamber)

Short Pulse UV capabilities are under constant development <u>CXI Specifications | Linac Coherent Light Source (stanford.edu)</u>

Phase 1: Improving the time resolution of the 3rd and 4th harmonics

	Current Pulse Width (FWHM)	Expected Performance (FWHM)
267 nm (3ω)	~80 fs	~35 fs
200 nm (4ω)	~120 fs	~50 fs

Phase 2: Generating tunable deep UV pulses

	Current Capability	Target Capability
245-260 nm	Available Run 21	~35 fs
220-245 nm	Possible for Run 21*	~40 fs
280-330 nm	Possible for Run 21*	~35 fs

Please contact CXI team member about your UV laser needs!