
AMO Science in Run 21 LCLS Virtual Town Hall

James Cryan AMOS Department Head March 3rd, 2022

AMOS Department at LCLS

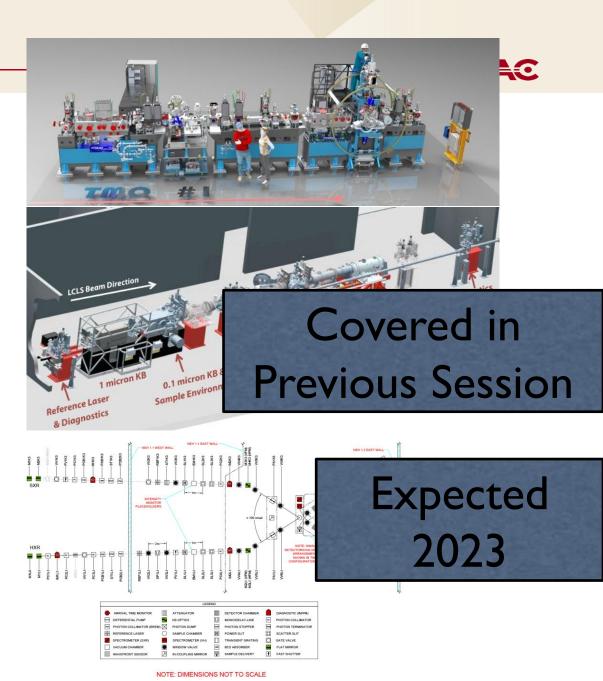
We are always open to and interested in collaborations!

DOE Office of Science Graduate Student Research (SCGSR) Program: <u>https://science.osti.gov/wdts/scgsr</u> Applications due 05/04/2022

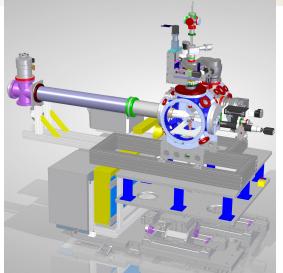
Other collaborative efforts also encouraged.

AMOS Science at LCLS

TMO:

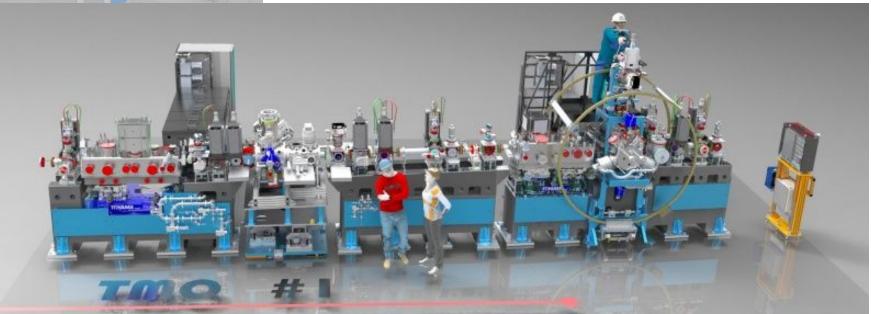

- Gas Phase SXR spectroscopy (Photochemistry)
- Attosecond Spectroscopy
- Coincidence Spectroscopy
- Imaging Nano-systems (moved to TXI)

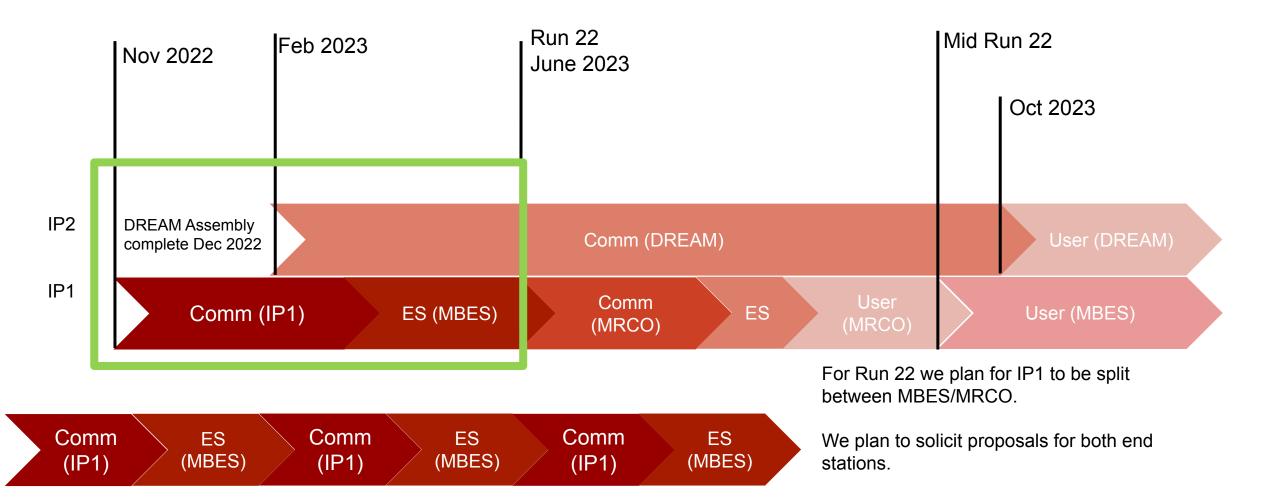
CXI:


- X-ray scattering in gas phase samples
- X-ray scattering in nano-scale systems

TXI:

• X-ray scattering in nano-scale systems


TMO Hutch for Run 21



Commissioning/Early Science in IP1

- 2m Magnetic Bottle Electron ToF Spectrometer
- Fresnel Zone Plate Based Spectrometer after IP1 (diagnostic)

Commissioning of DREAM end station in IP2

X-ray Parameters						
Repetition rate (Hz)	Up to 50 kHz					
Energy Range (eV)	250 - 1800					
		Under Development (increased risk)				
Pulse Duration	20 fs (nominal)	Tunable to 5 fs	< 1 fs (XLEAP-II)			
Energy per pulse	~ 50 µJ	Scales linear with pulse energy	2-3 μJ			
Bandwidth (FWHM)	2 eV	2 eV	4-8 eV			
Spot Size, FWHM (range)	1.0 - 200 (um) diameter					
Polarization	Linear, Horizontal					
Two Pulse Mode (jcryan@stanford.edu for more information)	Under development, offered at risk < 10 μ J / pulse with tunable delay via split undulator method. This provides a minimum delay of ~10 fs for arbitrary wavelength. For harmonic operation ($\omega/2\omega$, $\omega/3\omega$) the minimum delay ~200 as.					

 Commissioning of Super Conducting RF accelerator

SLAC

- Ramping rep. rate toward 100 kHz
- Only modest pulse energies available while commissioning
- Continued Development of Advanced Modes:
 - XLEAP
 - Pulse-pairs
 - Tunable pulse duration
- TMO performance benchmarked in previous Runs.

Laser Parameters						
Repetition rate (Hz)	Synchronized up to 33 kHz					
	800 nm	400 nm	High Risk	ES Only		
Wavelength			266 nm	1300-2400 nm		
Pulse Duration	< 25 fs	< 50 fs	< 50 fs	< 100 fs		
Energy per pulse (on target)	100 μJ	> 10 µJ	~ 1 µJ	< 10 <i>µ</i> J		

Spot Size, FWHM (800 nm) 50 to 100 um Polarization Variable: linear, circular Angle ~0.5 deg angle with x-ray beam Arrival Time Monitor tagging.

< 20 fs accuracy in x-ray/laser arrival time

- New OPCPA laser system
 - 33 kHz Repetition Rate
- Focus on 800 nm fundamental and harmonics for the Early Science period

SLAO

- OPA could also be available
- ATM should also be available for x-ray/laser timing

Early Science Planning

SLAC

Goal is to demonstrate new capabilities of the LCLS-II SCRF accelerator and undulators

- High Rep. Rate Tunable X-ray Pulses
- Attosecond Duration Pulses

Early Science is led by LCLS scientists, but engages the whole community

- LCLS collects experiment ideas and prioritizes together with the instrument advisory panels.
- LCLS consolidates early science plans with the user community and broadly advertises a call for participation.
- LCLS updates interested user groups on adjustments to the early science plan.

Interested groups should send a note on their intention to collaborate

- You can send any ideas you would like to add to the Early Science Plan
- Gas Phase Studies in TMO
 - James Cryan (jcryan@slac.stanford.edu)
 - Thomas Wolf (<u>thomas.wolf@slac.stanford.edu</u>)