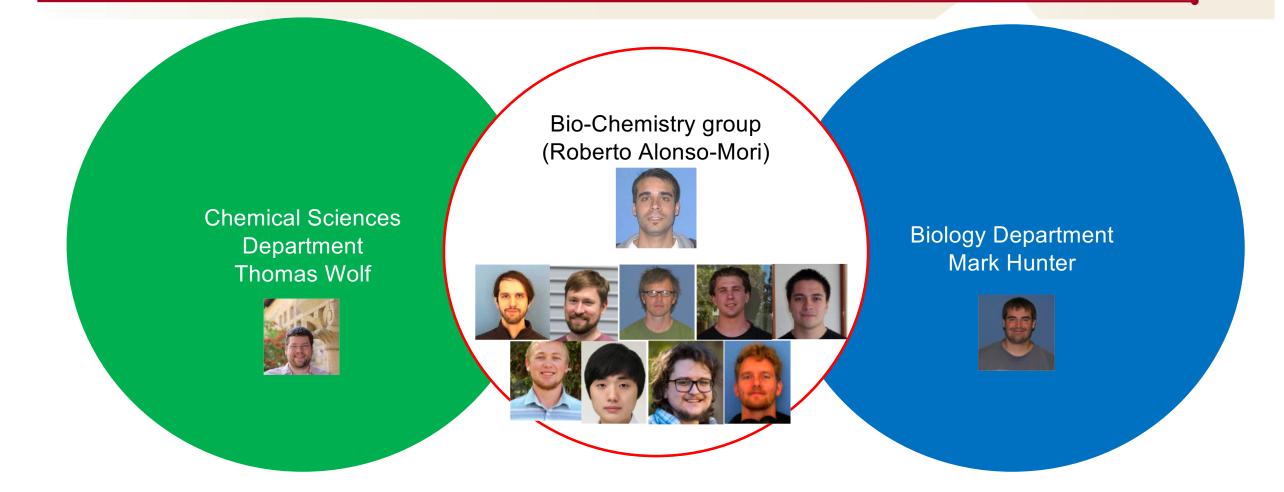
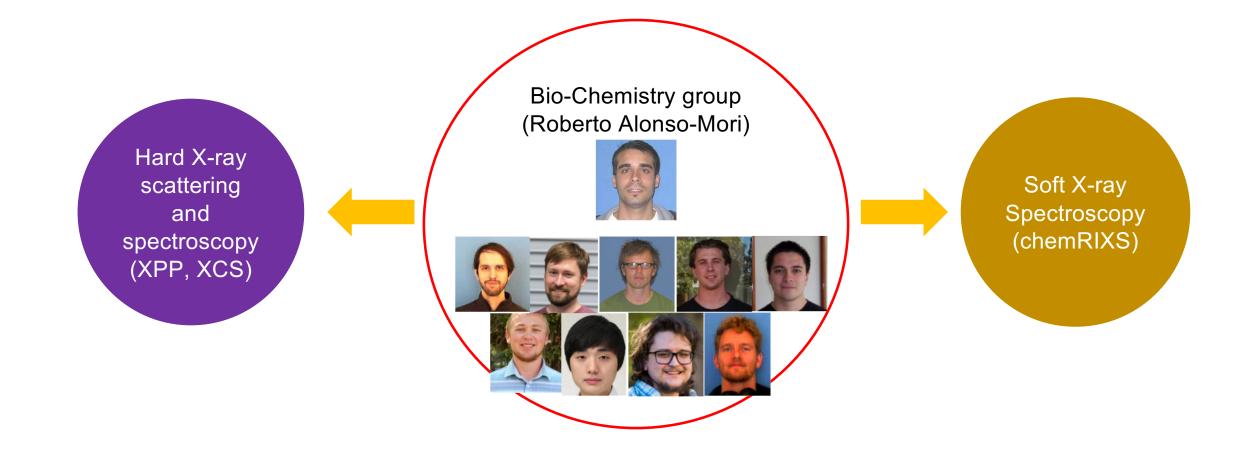
Solution Phase Photochemistry in Run 21 LCLS Virtual Town Hall

Thomas Wolf, LCLS Chemical Sciences Department head Roberto Alonso-Mori, Bio-Chemistry Group lead 03/21/2022




Outline

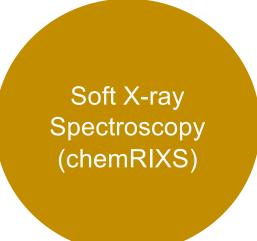
- Solution Phase Photochemistry
 - LCLS Team
 - Early Science Soft X-rays at High Rep Rate
 - Hard X-ray Capabilities
- Gas Phase Photochemistry
 - LCLS Team
 - Early Science Soft X-rays at High Rep Rate
 - Hard X-ray Capabilities

Solution Phase Photochemistry in the SRD Department Structure

Techniques and Instruments Supported by the Group

Points of contact - by science area and by instrument

LCLS Instrument Contacts:

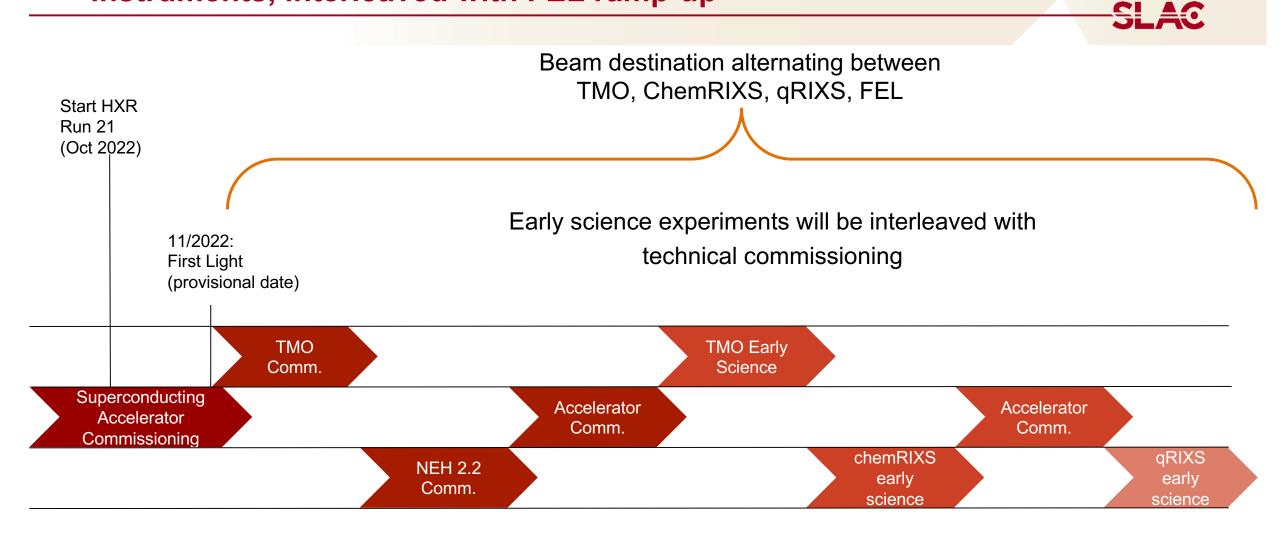

- Time-resolved AMO (TMO) James Cryan (jcryan@slac.stanford.edu)
- ChemRIXS Georgi Dakovski (dakovski@slac.stanford.edu) or Kristjan Kunnus, (kristjan@slac.stanford.edu)
- **qRIXS** Georgi Dakovski (dakovski@slac.stanford.edu)
- X-ray Pump Probe (XPP) Diling Zhu (dlzhu@slac.stanford.edu)
- X-ray Correlation Spectroscopy (XCS) Matthieu Chollet (mchollet@slac.stanford.edu)
- Macromolecular Femtosecond Crystallography (MFX) Alex Batyuk (batyuk@slac.stanford.edu)
- Coherent X-ray Imaging (CXI) Meng Liang (mliang@slac.stanford.edu)
- Matter in Extreme Conditions (MEC) Gilliss Dyer (gilliss@slac.stanford.edu)

LCLS Scientific Department Head Contacts:

- Atomic, Molecular and Optical Sciences James Cryan (jcryan@slac.stanford.edu)
- Biological Sciences Mark Hunter (mhunter2@slac.stanford.edu)
- Chemical Sciences Thomas Wolf (thomas.wolf@slac.stanford.edu)
- Laser Science Joe Robinson (jsrob@slac.stanford.edu)
- Materials Science Apurva Mehta (mehta@slac.stanford.edu)
- Materials in Extreme Conditions Cilliss Duer (ailliss@elac stanford edu)

- LCLS-II superconducting accelerator will startup during 2022/23
- First Light planned for November 2022
- For Run 21, the soft X-ray instruments will focus on using the high rep-rate beam
 - TMO, ChemRIXS, qRIXS
 - Technical commissioning followed by an LCLS-led, community-wide 'Early Science' period
 - No PRP proposals for Run 21 for these instruments
 - Users should submit ideas for the "Early Science" experiments (see next slides)

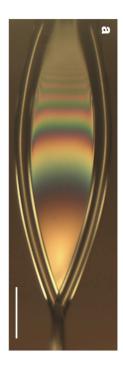
Soft X-ray Early Science Run 21

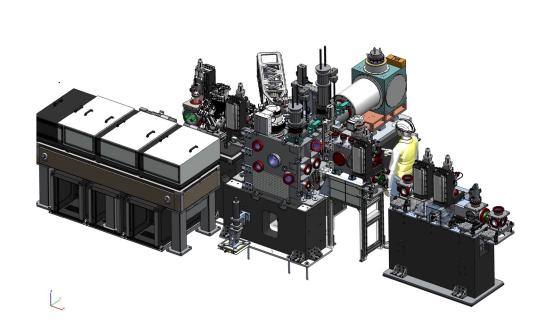


The Early Science process

- Motivation:
 - The complexity brought by high repetition rate operation warrants the implementation of a 3-step approach:
 - i. Allocate sufficient time for technical commissioning of beamline and instruments at high repetition rate
 - ii. Early Science, bridging the gap from technical commissioning of new instrumentation to regular user access
 - iii. PRP proposals (planned for the next Run)
 - Enables a more flexible response to emerging LCLS-II performance, and beamline/instrument readiness
- Early Science
 - Based on ideas solicited from the community
 - Led by LCLS staff, with broad involvement from the community
 - Overseen by the LCLS Scientific Advisory Committee (SAC) and the Instrument Advisory Panels (IAPs)
- Interested groups should contact the relevant department heads deadline 30 March
 - **TMO**: James Cryan (AMOS, jcryan@slac.stanford.edu)
 - **ChemRIXS**: Thomas Wolf (Chemical Sciences, thomas.wolf@slac.stanford.edu)
 - **qRIXS**: Apurva Mehta (Materials Sciences, mehta@slac.stanford.edu)
- Experiment ideas will then be prioritized by LCLS staff and the instrument advisory panels.
- The resultant early science plans will be advertised to the user community to solicit participation.

- March 30, 2022: Deadline for Letters of Interest to LCLS (same date as regular proposals)
 - One-page summary of science / instrument areas of interest, or
 - Bulleted list of experimental ideas
- April June 2022: LCLS engages with User Community to develop the plan.
- . June 30, 2022: LCLS announces Early Science experiments to User Community
- September 1, 2022: Deadline for interested users to submit a description of their proposed contribution to the specific Early Science experiments.
 - Experiments are open enrollment, subject to forming a balanced onsite team.
- . November 2022: Provisional date for 'First Light' from SCRF beam, followed by:
 - FEL commissioning
 - Beamline/instrument commissioning
 - Early Science (likely in early 2023 onwards)

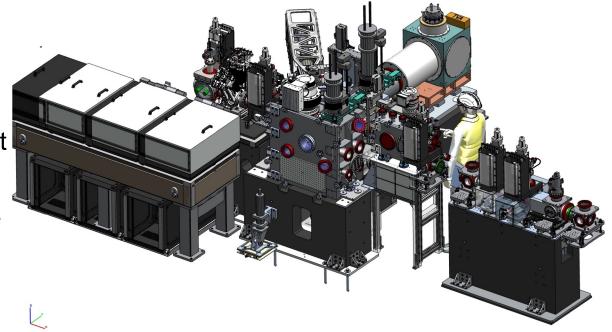

Early Science during Run 21 will follow a phased approach between the instruments, interleaved with FEL ramp-up



The chemRIXS Endstation

Endstation for in-vacuum liquid sheet jets Available detectors:

- APDs for Total fluorescence yield detection
- Andor camera
- Variable line spacing spectrometer

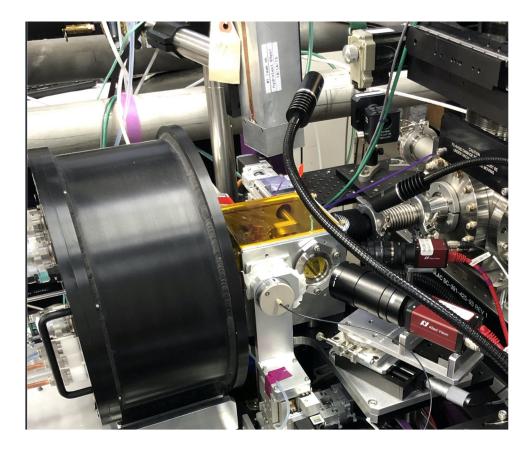

X-ray and Laser Parameters for chemRIXS in Run 21

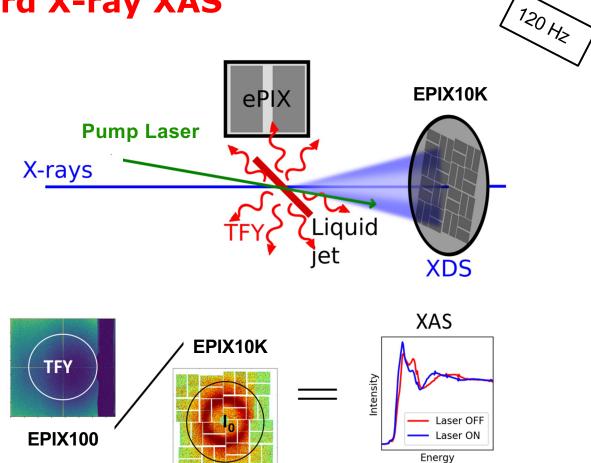
X-ray Parameters		
Repetition rate (Hz)	Up to 50 kHz	
Energy Range (eV)	250 - 1100	
Pulse Duration	20 fs (nominal)	
Energy per pulse (downstream of mono)	>100 nJ	
Beamline resolving power	> 2000	
Spot Size, FWHM (range)	10 - 1000 (um) diameter	
Polarization	Linear, Horizontal	

Laser Parameters			
Repetition rate (Hz)	Synchronized up to 33 kHz		
Wavelength	800	400	High Risk
	nm	nm	266 nm
Pulse Duration	< 25 fs	< 50 fs	< 50 fs
Energy per pulse (on target)	300 µ J	> 30 µJ	~ 3 µJ
Spot Size, FWHM (800 nm)	50 to 100 um		
Polarization	Variable: linear, circular		ircular
Angle	~0.5 deg angle with x-ray beam		
Arrival Time Monitor	< 20 fs accuracy in x- ray/laser arrival time tagging.		

User Involvement in Early Science

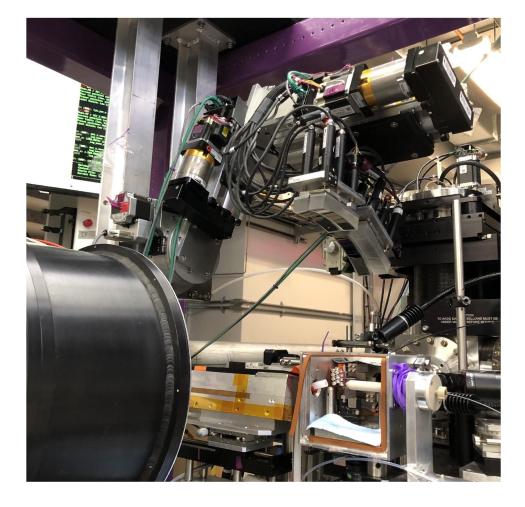
- Interested groups should contact Thomas (thomas.wolf@slac.stanford.edu)
- Department head collects experiment ideas and prioritize together with the chemRIXS instrument team and the instrument advisory panel.
- LCLS communicates consolidated early science plan with user community and broadly advertise participation.
- LCLS updates interested user groups on adjustments to the early science plan.

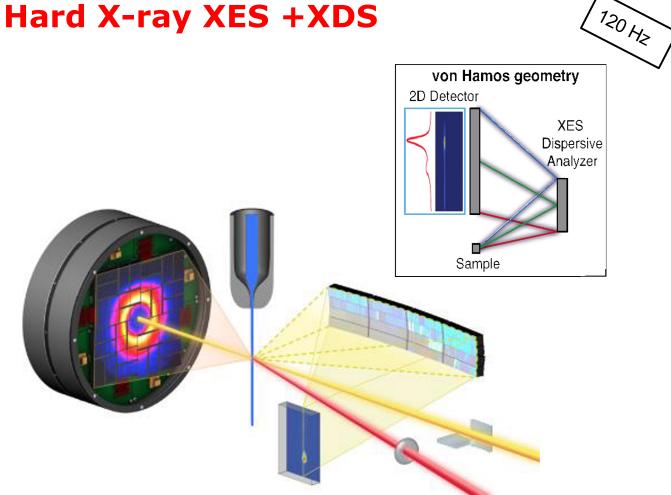



Hard X-ray Capabilities for User Proposals in Run 21

XPP Standard Configuration #2: Liquid Phase XAS

Time Resolved Hard X-ray XAS

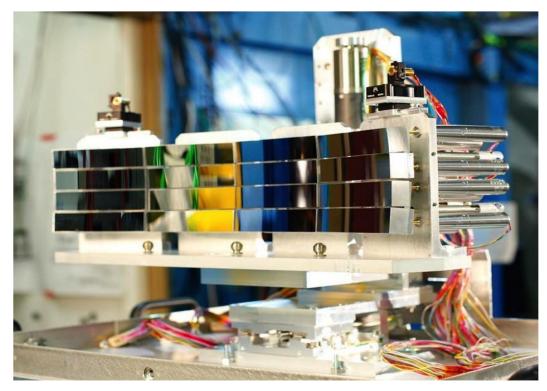


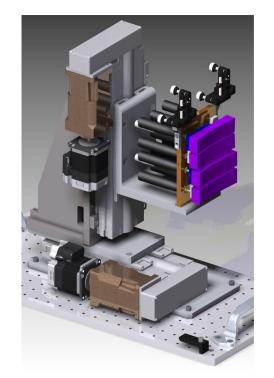


https://lcls.slac.stanford.edu/instruments/xpp/standard-configurations

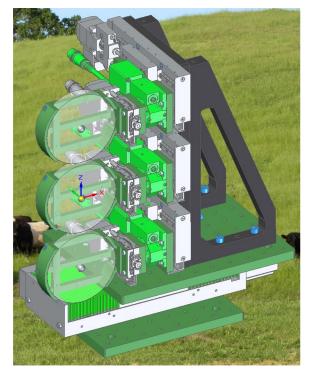
XCS Standard Configuration #1: Liquid Phase XES/XDS

Time Resolved Hard X-ray XES + XDS

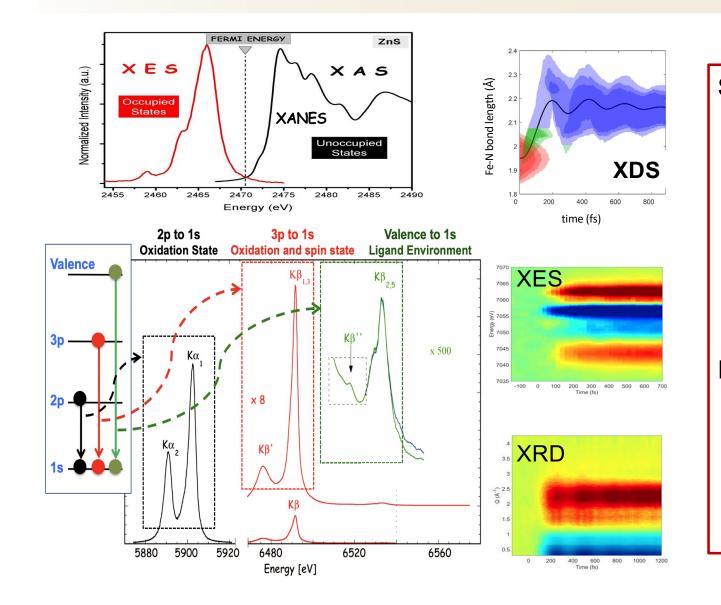



https://lcls.slac.stanford.edu/instruments/xcs/standard-configurations

Hard X-ray Spectroscopy at LCLS: XES


Existing LCLS multi-crystal X-ray Emission Spectrometers

16 crystal energy dispersive von Hamos


4 crystal E. dispersive von Hamos

3 crystal scanning Rowland

Alonso-Mori et al. RSI, 83 (2012)

Spectroscopy/XDS Measurements:

Standard:

- XAS (XANES)
- XDS (0.2 to 5 q-range)
- HighEnergie XDS expand q (<25keV)
- K α , K β 1,3 and K β 2,5 XES of 3d TM
- L XES of 5d TM

Not so Standard:

- Resonant XES measurements

RIXS (von Hamos)

HERFD (Rowland)

- EXAFS

Standard Configuration Parameters Table:

Sample Delivery:

Standard:

- Round jets (30-100um) -
- Sheet jets -

Not so Standard:

- Thinner jets -
- Drop on demand
- Solid targets

Pump Laser:

Standard:

- Collinear (2 deg) -
- Fundam&Harm 800,400,266nm -
- OPA (480-2400 nm) -

Not so Standard:

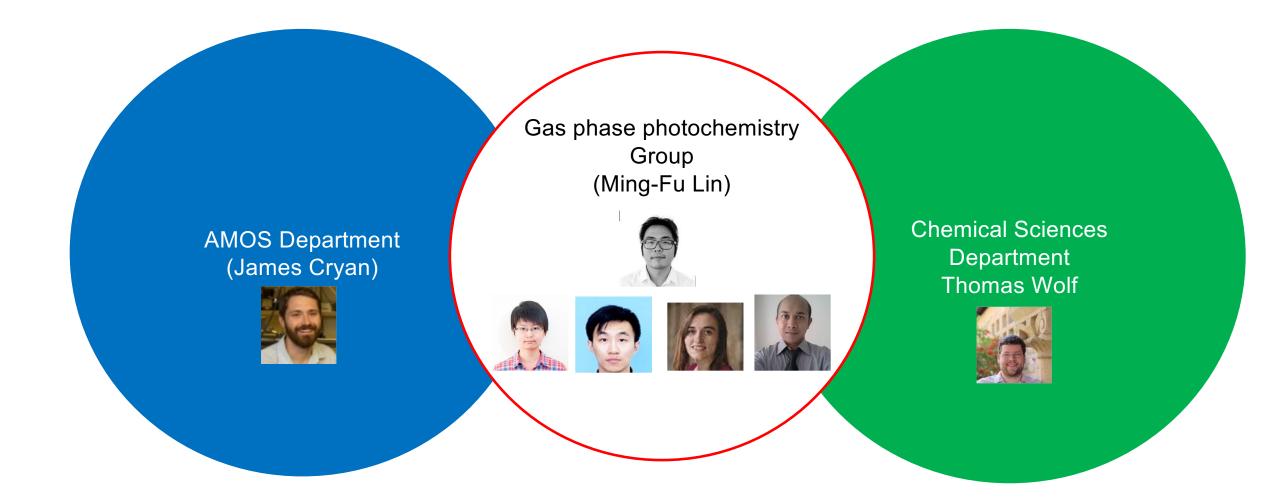
- Not collinear -
- THz -
- 8 ns laser (410-2200 nm) -

Resolution (Instrument Response):		
Standard:	65 to 100 fs	
Not so Standard:	<65	

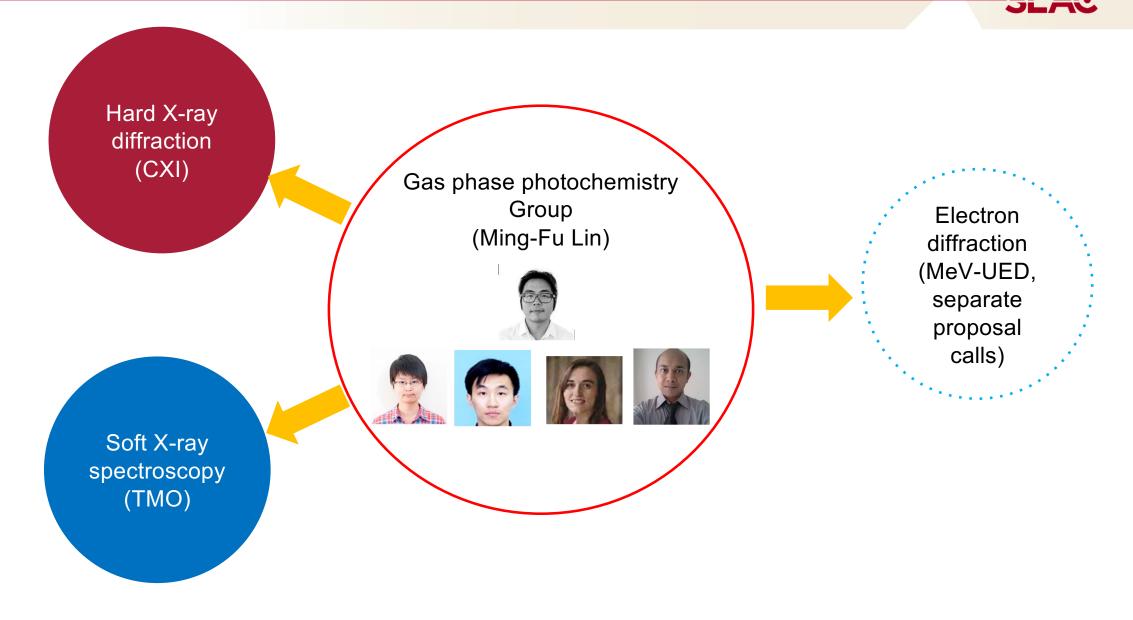
Parameter Table for the XPP Standard Configuration S

Sample	Sample(S) description	
	Temperature range [C]	
X-ray Parameters	X-ray Energy	Fixed to 9(Cu k-edge)-13 keV
	X-ray Pulse Duration	Fixed to ~50fs
	Mono bandwidth [meV] (default 600 meV with Diamond(111))	
	X-ray Focal spot size within 10 to 200 µm	
	X-ray polarization Vertical(default), horizontal or Circular (including switching capability)	
	Detector positioning range,	
Detector	List of Bragg reflections and typical scattering angles.	
Optical beam parameters	Wavelength [nm]	
	Pulse duration [fs]	
	Maximum Pulse Energy [µJ]	
	Focal size (FWHM) [µm]	
	Polarization requirements?	
	Minimum fluence on sample [mJ/cm ²]	
	Geometry	Collinear or Non-collinear up to 7 degree
X-ray Beam Time	Number of shifts [1 shift = 12 hr]	
Anve	additional comments	

Parameter Table for the XCS Standard Configuration

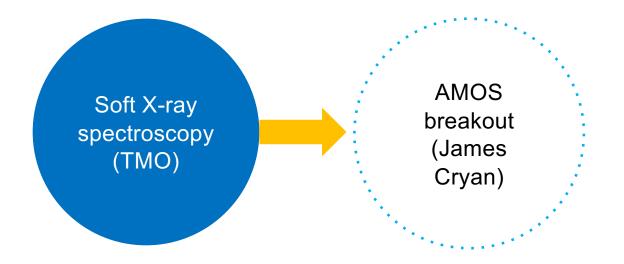

Scatt

Any additional comments


i ui uiiictei	Tuble for the Reb Stand	and Connight attom
Sample & sample delivery	Sample(S) description	
	Round jet diameters [20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 250, 300, 500] µm	
	Flat sheet jet thickness [19, 25, 38, 50, 75, 100, 125, 175, 188, 250] μm	
Scattering	[yes/no]	
	Maximum Q [Å-1]	
X-ray		
Emission	[yes/no]	
Spectroscopy	6	
-	Which Emission line(S) :	
	Mn : Kß _{1,3} , Kß _{2,5} and K	
	Fe : Kß _{1,3} and Kß _{2,5}	
	Co : KB _{1,3} and KB _{2,5}	
	Ni : KB _{1,3} and KB _{2,5}	
	Ti : KB _{1,3} and KB _{2,5}	
	V : K _a .	
X-ray Parameters	X-ray Energy	Fixed to 9.5keV
	X-ray Pulse Duration	Fixed to ~50fs
	Monochromatic or Pink	
	X-ray Focal spot size within	
	2 to 100 µm	
Optical beam parameters	Wavelength [nm]	
	Pulse duration [fs]	
	Maximum Pulse Energy [µJ]	
	Focal size (FWHM) [µm]	
	Polarization requirements?	
	Minimum fluence on sample [mJ/cm ²]	
	Geometry	Collinear
X-ray Beam	Number of shifts [1	conneur
Time	shift = 12 hrs]	

Any additional comments

Gas Phase Photochemistry in the SRD Department Structure



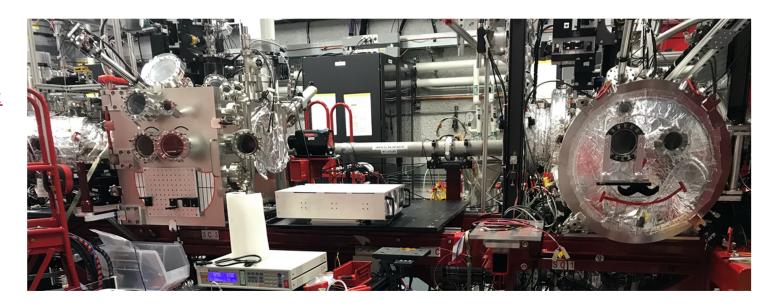
Techniques and Instruments Supported by the Group

Soft X-ray Early Science Run 21

Gas Phase Chemistry at CXI

CXI - Coherent X-ray Imaging | Linac Coherent Light Source (stanford.edu)

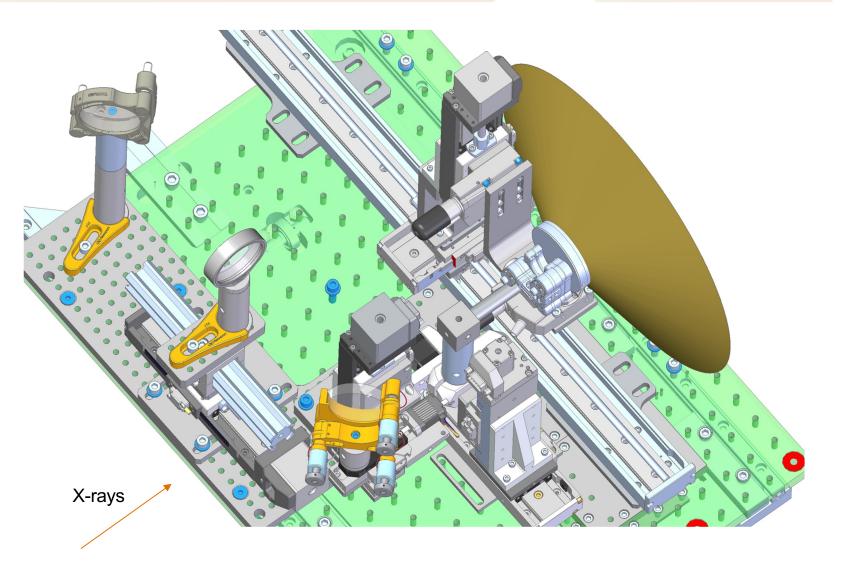
Primary considerations:

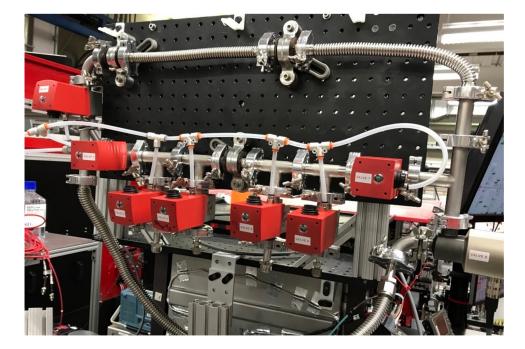

- Low background scatter Vacuum environment at hard X-ray energies with numerous slits for a clean focal spot
- Short Pulse UV capabilities

Standard configuration for gas phase

chemistry:

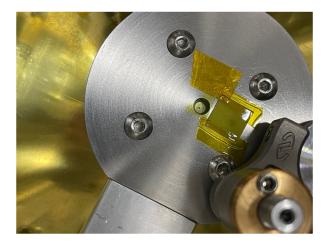
CXI Standard Configuration | Linac Coherent Light Source (stanford.edu)


- Photon energy
 - 7keV-11keV (1 μm focal spot) –
 KB mirrors (reflective optics)
 - 0 11keV-25keV (2-3μm 50μm
 focal spot) CRLs


SLAC

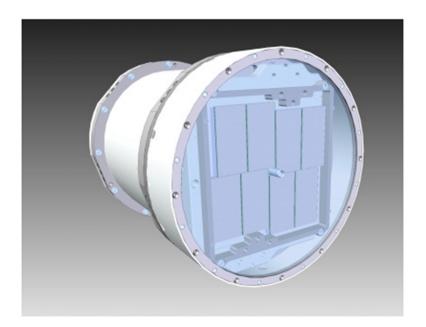
Standard Configuration

- Gas cell
- Be exit window downstream
- Pt pinhole entrance
- Additional Pt pinhole upstream
- Scattering cone
- UV pump propagates in-line with the X-rays
- Fully controllable sample delivery manifold



Standard Configuration

gas manifold - accommodates 4 samples



gas cell, entrance pinhole and frosted YAG for spatial overlap

Gas cell, pinhole, scattering cone

Standard Configuration

- Detector 4M Jungfrau detector Jungfrau | Linac Coherent Light Source (stanford.edu)
 - Adaptive gain
 - background is <1 photon / image with proper alignment
- in-line X-ray spectrometer available as needed
- Downstream I0 monitor

New for Run 21

- Prefocusing lenses in the XRT to increase flux when using the CRLs by avoiding losses due to the clear aperture of the CXI CRLs
- Downstream monitor of the UV pump power (after sample), likely in SSC (downstream chamber)

Short Pulse UV development

Short Pulse UV capabilities are under constant development <u>CXI Specifications | Linac Coherent Light Source (stanford.edu)</u>

Phase 1: Improving the time resolution of the 3rd and 4th harmonics

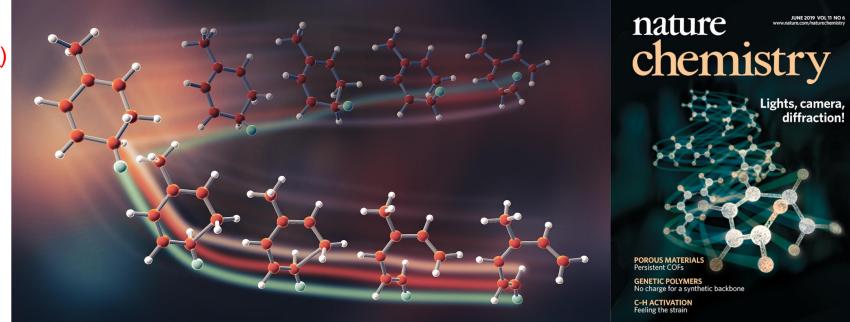
	Current Pulse Width (FWHM)	Expected Performance (FWHM)
267 nm (3ω)	~80 fs	~35 fs
200 nm (4ω)	~120 fs	~50 fs

Phase 2: Generating tunable deep UV pulses

	Current Capability	Target Capability
245-260 nm	Available Run 21	~35 fs
220-245 nm	Possible for Run 21*	~40 fs
280-330 nm	Possible for Run 21*	~35 fs

Please contact CXI team member about your UV laser needs!

Job Opening for an Associate Scientist


- Develop gas phase photochemistry research and instrumentation
- Conduct and support experiments at UED, CXI, and TMO
- Join the UED instrument team

https://erp-

hprdext.erp.slac.stanford.edu/psp/hprdext/EMPLOYEE/HRMS /c/HRS_HRAM_FL.HRS_CG_SEARCH_FL.GBL?Page=HRS _APP_JBPST_FL&Action=U&FOCUS=Applicant&SiteId=1&J obOpeningId=4908&PostingSeq=1

Contact:

- Thomas Wolf (<u>thomas.wolf@slac.stanford.edu</u>)
- James Cryan (jcryan@slac.stanford.edu)

