MEC Science in Run 21 LCLS Virtual Town Hall

MEC Department at LCLS

Gilliss Dyer Eric Cunningham* Eric Galtier Philip Heimann Dimitri Khaghani

Research Areas

Ultra-intense Laser Matter Interactions

Dynamic Materials

Hae Ja Lee Bob Nagler Hai-En Tsai*

* Lasers

Warm Dense Matter

Hot Dense Plasmas

We are always open to and interested in collaborations!

DOE Office of Science Graduate Student Research (SCGSR) Program: <u>https://science.osti.gov/wdts/scgsr</u> Applications due 05/04/2022

MEC Hutch for Run 21

Standard configurations for coaxial shock + WAXS and side-drive shock + PCI
New beam delivery platform for short pulse
Opportunities for direct imaging experiments and multi-pulse
New spectrometers commissioned

Hard X-Ray Parameters for Run 21

X-ray Parameters		
Repetition rate (Hz)	Up to 120 Hz	
Pulse Duration	40 fs (nominal)	
Modes	SASE	Self-seeded
Energy Range (eV)	4000 – 25,000	4500 – 11,000
Energy per pulse*	0.6 – 2 mJ	0.5 – 0.2 mJ
Bandwidth (FWHM)	~ 30 eV @ 25 keV; ~ 8 eV @ 4 keV	1.5 eV @ 11 keV; .35 eV @ 4.5 keV
Spot Size (FWHM);	∼ 2.0 - 50 (µm) dia; to <200 nm with MXI + mono	
Polarization	Linear, Vertical	
Multi-bucket mode (requires substantial setup and tuning)	Two pulses: 350 ps increments of relative delay up to 120 ns. Energy separation up to ~1%; 0.5 to 1 mJ per pulse 4 or 8 bunches (u <i>nder development, offered at risk)</i> Two trains of 4 pulses; 700 ps between each pulse in the same train	

New MEC X-ray Imager (MXI) used for tighter focusing (CRL lens stack)Collaborative use of Ultrafast X-ray Imagers for using multi-bucket mode in imaging configurations

* Pulse energies presented do not include transmission losses to hutch

MEC Long Pulse Laser System

- Seed: custom diode-pumped Nd:YLF
- >100mJ, 5-35ns (arbitrary), 10Hz
- Power amp: 4 x 50mm Nd:Glass
 - Total >60J for >10 ns; 6J/ns for < 10 ns
 - Energies are for flat-top beams
 - Divided in 4 arms polarization multiplexed to two beams
 - typical shapes: flat-top, ramp, step, etc.
 - CPPs: 150um, 300um, 600um diameter (intensity >1013 W/cm2 with 150um CPPs)

10 12

MEC Short Pulse Laser System

- Front end: Vitara + Legend
 - 4.1 mJ, 45 fs, 120 Hz
- Nonlinear pulse cleaner
 - TOPAS-Prime + NDFG (SFG)
- Back end: two home-built MPAs
 - MPA1: 4 pass □ ~14 mJ (120 Hz)
 - MPA2: 3 pass

 ~1.5 J (5 Hz)
 - ~1J, <50fs, >107 contrast @ >3ps
- Max ~10¹⁹ W/cm² with f/5 OAP

Alternate schemes delivered previously:

- MPA1 only (compressed)
- <u>MPA2 (uncompressed)</u>

5mm PL)

MPA2 (Ø30m x 20mm PL)

- Secondary optical sources:
 - <u>SHG (~mJ @ 120Hz or ~100s mJ @ 5</u> <u>Hz)</u>
 - OPA (<mJ, 50fs, 120Hz)
 - S: 1140-1600nm
 - I: 1600-2600nm
 - other wavelengths too* (THz, HHG, betatron)
- ns-OPO also newly acquired
 - S: 650-1064nm
 - I: 1064-2600nm

MEC Standard Configurations

Coaxial shock with XRD

10

-150

-100

-50

φ (degrees)

50

100

150

Coaxial shock with XRD VISAR for 0° target Sacrifice Q2 for Forward XRTS Orthogonal shock with XRD and PCI VISAR for 90° target Removes Q2

MEC X-ray Imager

Concept:

- Uses Be CRLs to produce phase contrast or amplitude sensitive indirect X-ray images from the FEL passing through a sample
- PCI (upstream TCC) or direct imaging (downstream TCC) mode **Capabilities:**
- 200 nm resolution over a 100-µm field of view at about 8 keV
- imaging with a 92-lens stack demonstrated at 18 keV
- can carry 3 CRL stacks to adjust spatial resolution and field of view
- * Contact Philip Hart (detectors) for inquiries about the UXI's potential availability in a collaborative experiment: philiph@slac.Stanford.edu

New Standard Short Pulse Beam Delivery

- Substantially reduces setup time, helping with experiment feasibility
- Supports delivery of full power, uncompressed, or frequency-doubled modes
- Leaves 3 quadrants of the chamber clear for diagnostics
- Contact Eric Galtier for more details
 - <u>egaltier@slac.Stanford.edu</u>